Die Maurer-Cartan-Form ist eine in Differentialgeometrie und Mathematischer Physik häufig verwendete Lie-Algebra-wertige Differentialform auf Lie-Gruppen. Sie ist benannt nach dem deutschen Mathematiker und Hochschullehrer Ludwig Maurer und dem französischen Mathematiker Élie Cartan.

Definition

Sei eine Lie-Gruppe, ihre Lie-Algebra. Für induziert die Links-Multiplikation

das Differential

.

Die Maurer-Cartan-Form ist definiert durch

für .

Maurer-Cartan-Gleichung

Die Maurer-Cartan-Form erfüllt die Gleichung

.

Hierbei ist der Kommutator Lie-algebra-wertiger Differentialformen durch

und die äußere Ableitung durch

definiert.

Einzelnachweise

  1. Jeffrey M. Lee: Manifolds and differential geometry. American Mathematical Society, Providence, R.I. 2009, ISBN 0-8218-4815-1, Chapter: 5.6 The Maurer Cartan Form.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.