In der Mathematik, speziell in der Gruppentheorie, nennt man für eine Primzahl p jede zur multiplikativen Gruppe

isomorphe Gruppe eine p-Prüfergruppe oder eine p-quasizyklische Gruppe. besteht aus den komplexen Einheitswurzeln, deren Ordnung eine Potenz von p ist.

Es handelt sich um eine abelsche, abzählbare Gruppe.

Definitionsgemäß sind die p-Prüfergruppen untereinander isomorph, daher spricht man ohne nähere Präzisierung einfach von der p-Prüfergruppe. Man sagt, eine Gruppe G sei eine Prüfergruppe, wenn es eine Primzahl p gibt, so dass G eine p-Prüfergruppe ist. Die Prüfergruppen zu verschiedenen Primzahlen sind nicht isomorph.

Die Prüfergruppen sind zu Ehren des Mathematikers Heinz Prüfer benannt.

Äquivalente Definitionen

Es seien p eine Primzahl und G eine Gruppe. Jede der folgenden fünf Eigenschaften ist äquivalent dazu, dass G eine p-Prüfergruppe ist, und jede dieser Eigenschaften kann daher als Definition der Prüfergruppen verwendet werden.

a) G ist isomorph zur Faktorgruppe , wobei die von den rationalen Zahlen mit gebildete Untergruppe von bezeichnet.

Beweis: Der Homomorphismus ist surjektiv und hat den Kern .

b) G ist isomorph zur Faktorgruppe , wobei F die freie abelsche Gruppe (das heißt der freie -Modul) mit einer abzählbar unendlichen Basis und R die von erzeugte Untergruppe von F ist.

c) G hat eine Präsentation

Beweis: Sei L eine freie (nichtabelsche) Gruppe über einer abzählbaren Basis und S der von erzeugte Normalteiler. Für jede natürliche Zahl j sei das kanonische Bild von in . Es ist klar, dass von je zwei der Elemente eines eine Potenz des anderen ist, das heißt die vertauschen miteinander. Da sie erzeugen, ist abelsch, mit anderen Worten, S enthält die Kommutatorgruppe K(L). Nach dem zweiten Isomorphiesatz ist daher isomorph zu . Nun ist eine freie, abelsche Gruppe (frei als abelsche Gruppe) mit den Bildern der Elemente als Basis in und wird von erzeugt. Jetzt schließt man mittels b) weiter.

d) G hat ein Erzeugendensystem so dass , und für alle .

e) G ist die Vereinigung einer aufsteigenden Folge , wobei Cn für jeden Index n eine zyklische Gruppe der Ordnung pn ist.

Eigenschaften

  • Jede echte Untergruppe einer Prüfergruppe ist zyklisch und insbesondere endlich. Die Prüfergruppe besitzt für jede Zahl n genau eine Untergruppe der Ordnung pn. Die Menge der Untergruppen einer Prüfergruppe ist durch die Inklusion wohlgeordnet. Die Prüfergruppe ist also als -Modul nicht noethersch.
  • Eine unendliche, abelsche Gruppe ist genau dann eine Prüfergruppe, wenn sie isomorph zu jeder Faktorgruppe nach einer echten Untergruppe ist.
  • Die Prüfergruppen sind teilbar. Ihre Bedeutung erschließt sich aus dem folgenden Satz:
Jede teilbare, abelsche Gruppe ist isomorph zu einer (endlichen oder unendlichen) direkten Summe, in der jeder Summand eine Prüfergruppe oder isomorph zur additiven Gruppe der rationalen Zahlen ist.
Beispielsweise ist die additive Gruppe die direkte Summe ihrer p-Sylowgruppen, die nichts anderes als die p-Prüfergruppen sind.

Einzelnachweise

  1. J. Calai: Éléments de théorie des groupes, Kapitel IV, Übung. 34, Seite 172
  2. D.J.S. Robinson: A Course in the Theory of Groups, Springer-Verlag 1996, ISBN 0-387-94461-3, Seite 94: Quasicyclic Groups
  3. J.J. Rotman: An Introduction to the Theory of Groups, 4. Auflage 1999, Satz 10.13 und Übung 10.5
  4. J. Calais: Éléments de théorie des groupes, Presses universitaires de France, Paris 1984, Kapitel IV, Übung 34, Seite 172
  5. B. Baumslag et B. Chandler, Group Theory, Mc-Graw Hill, 1968, Satz 6.31, Seite 206
  6. Dass jede Prüfergruppe diese Eigenschaft hat, findet sich in J. Calais: Éléments de théorie des groupes, Presses universitaires de France, Paris 1984, Kapitel IV, Übung. 34, f), Seite 172. Für die Umkehrung siehe J.J. Rotman: An Introduction to the Group Theory, 4. Auflage 1999, exerc. 10.40, iii, p. 330.
  7. J.J. Rotman: An Introduction to the Group Theory, 4. Auflage 1999, Satz 10.28, Seite 323
  8. D.J.S. Robinson: A Course in the Theory of Groups, Springer-Verlag 1996, ISBN 0-387-94461-3, Satz 4.1.5
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.