Ein Riesz-Raum ist ein Vektorraum mit einer Verbandsstruktur, die so beschaffen ist, dass sich die lineare und die Verbandsstruktur vertragen. Im Jahr 1928 wurde dieser Raum von Frigyes Riesz definiert und trägt deshalb heute seinen Namen.
Definition
Sei ein -Vektorraum und eine halbgeordnete Menge.
Dann heißt ein Riesz-Raum wenn folgende Axiome erfüllt sind:
- Für alle gilt: .
- Für alle gilt: und .
- ist ein Verband.
Anmerkungen
- 1. und 2. bedeuten ist ein geordneter Vektorraum.
- Bei der Formulierung von 2. ist zu beachten, dass sich sowohl auf , als auch auf bezieht, aus dem Zusammenhang ist meistens klar, welche Ordnungsrelation gemeint ist, so dass üblicherweise auf zusätzliche Indizes verzichtet wird.
- 2. lässt sich auch durch die schwächere Forderung und ersetzen.
- Bezeichnen die Verbandsoperationen, so ist es Konvention, dass stärker binden, als (Klammerregel).
Erste Eigenschaften
Für und gelten folgende Rechenregeln:
- und
- und
- und
- Sei für .
- Dann gilt und .
- und
- und
- Dies bedeutet jeder Riesz-Raum ist ein distributiver Verband.
Beispiele
- Die reellen Zahlen mit der üblichen Anordnung bilden einen Riesz-Raum.
- Der mit komponentenweiser Anordnung bildet einen Riesz-Raum.
- Die Menge der reellen Zahlenfolgen mit komponentenweiser Anordnung bildet einen Riesz-Raum.
- Die Menge der reellen Nullfolgen mit komponentenweiser Anordnung bildet einen Riesz-Raum.
- Für ist mit komponentenweiser Anordnung ein Riesz-Raum.
- Die Menge der beschränkten reellen Folgen mit komponentenweiser Anordnung bildet einen Riesz-Raum.
- Die Menge der stetigen Funktionen auf einem Intervall bildet mit punktweiser Anordnung einen Riesz-Raum.
- Die Menge der stetig differenzierbaren Funktionen auf einem Intervall bildet einen geordneten Vektorraum mit der punktweisen Anordnung, aber keinen Riesz-Raum.
Integrationstheorie
Riesz-Räume bieten Voraussetzungen für eine abstrakte Maß- und Integrationstheorie. Die zentrale Aussage in diesem Zusammenhang ist der Spektralsatz von Freudenthal. Dieser Satz garantiert für Riesz-Räume auf abstrakte Weise die Approximationseigenschaft von Funktionen durch Treppenfunktionen. Der Satz von Radon-Nikodým und die Poissonsche Summenformel für beschränkte harmonische Funktionen auf der offenen Kreisscheibe sind Spezialfälle des Spektralsatzes von Freudenthal. Dieser Spektralsatz war einer der Ausgangspunkte für die Theorie der Riesz-Räume.
Einzelnachweise
- ↑ Riesz, Frigyes: Sur la décomposition des opérations fonctionelles linéaires, Atti congress. internaz. mathematici (Bologna, 1928), 3, Zanichelli (1930) pp. 143–148
Literatur
- Luxemburg, W.A.J. & Zaanen, A.C.: "Riesz spaces", North-Holland, 1971, ISBN 978-0444866264
- V. I. Sobolev: Riesz space. In: Michiel Hazewinkel (Hrsg.): Encyclopedia of Mathematics. Springer-Verlag und EMS Press, Berlin 2002, ISBN 1-55608-010-7 (englisch, encyclopediaofmath.org).