Die Weil-Restriktion (auch Weils Restriktion der Skalare) bezeichnet in der algebraischen Geometrie ein -Schema, welches aus einem -Schema und einem Morphismus von Schemata entstand.

Häufig interessiert man sich für den Fall, wenn eine endliche Körpererweiterung ist. Die Weil-Restriktion ist verwandt mit dem Konzept Restriktion der Skalare und nach André Weil benannt.

Weil-Restriktion

Grundbegriffe

Fixiere ein Schema , ein Schema ausgestattet mit einem Morphismus nennt man ein -Schema. Alle Schemata über einem fixierten Schema bilden die Kategorie .

Sei eine Kategorie, dann bezeichnet ihre duale Kategorie.

Definition

Sei ein Morphismus von Schemata. Für ein -Schema betrachte den kontravarianten Funktor

Falls der Funktor darstellbar ist, dann heißt das dazugehörige -Schema, welches auch mit notiert wird, die Weil-Restriktion von bezüglich .

Einzelnachweise

  1. Siegfried Bosch, Werner Lütkebohmert und Michel Raynaud: Néron models. Hrsg.: Springer-Verlag. Berlin 1990, S. 191.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.