Die Zeltabbildung ist eine mathematische Funktion mit dem Definitions- und Wertebereich . Sie ist eine der einfachsten Funktionen, mit deren Hilfe sich die chaotische Dynamik nichtlinearer deterministischer Abbildungen untersuchen und insbesondere die Kernaussage des Schmetterlingseffekts verifizieren lässt, dass beliebig kleine Änderungen in den Anfangsparametern große Auswirkungen haben können.
Definition und Eigenschaften
Die Zeltabbildung ist definiert durch:
Fixpunkte und periodische Punkte
Für bildet die Funktion den Eingabewert auf sich selbst ab. Des Weiteren ergibt sich aus der Struktur der Funktion, dass alle , die sich als mit darstellen lassen, nach spätestens Iterationen den Fixpunkt erreichen. Außerdem gibt es für jedes periodische Punkte mit der Primperiode , bei denen die -fach wiederholte Anwendung von zum Anfangswert führt
Demonstration des Schmetterlingseffekts
Wendet man die Zeltabbildung -fach hintereinander auf einen Anfangswert an, erhält man eine neue Abbildung :
Vergleicht man die Werte von für zwei beliebig nahe beieinander liegende , findet man bei hinreichend großen innerhalb des Wertebereiches beliebig große Differenzen im Intervall .
Siehe auch
Einzelnachweise
- ↑ Julio R. Hasfura-Buenaga, Phillip Lynch: Periodic Points of the Family of Tent Maps. (pdf) Abgerufen am 23. März 2017 (englisch).
Weblink
Lehrmaterial zur Zeltabbildung von der Uni Mainz, abgerufen am 17. Juli 2018