Gebundener Vektor
Als gebundener Vektor oder lokalisierter Vektor wird in der Technischen Mechanik ein Vektor bezeichnet, mit dem eine gerichtete physikalische Größe beschrieben wird, die einem bestimmten Punkt im Raum zugeordnet ist. Ein Beispiel ist eine durch den Vektor gegebene Kraft, die auf einen Körper wirkt: je nach Angriffspunkt kann sie verschiedene Wirkungen haben. Wird ein gebundener Vektor durch einen Pfeil dargestellt, kann dieser nicht zu beliebigen Punkten im Raum verschoben werden, ohne dass sich die entsprechende physikalische Wirkung ändert. Der gegenteilige Begriff freier Vektor gilt für vektorielle Größen, die unabhängig von jedem Bezugspunkt die gleiche Bedeutung haben. Ein Beispiel ist die Geschwindigkeit der Massenpunkte eines nur translatorisch bewegten starren Körpers, oder das Drehmoment eines Kräftepaars.
Der Begriff wurde von Heinrich Emil Timerding geprägt und auf einen an eine Wirkungslinie gebundenen Vektor bezogen, wie es etwa für die Kraft auf einen starren Körper im Fall des statischen Gleichgewichts gilt. August Föppl führte dafür später den Begriff linienflüchtiger Vektor ein. In manchen älteren Lehrbüchern der Mechanik starrer Körper werden deswegen unter dem Begriff gebundener Vektor linienflüchtige Vektoren beschrieben, die entlang ihrer Wirkungslinie, aber nicht quer zu ihr, verschiebbar sind.
Gebundene Vektoren werden vor allem in der Statik verwendet, um für ein System aus mehreren gleichzeitig wirkenden Kräften mit verschiedenen Richtungen und Angriffspunkten die Gesamtwirkung zu ermitteln. In Lehrbüchern der theoretischen Mechanik als Teilgebiet der Physik ist der Begriff ungebräuchlich.