Klassisches Runge-Kutta-Verfahren
Das klassische Runge-Kutta-Verfahren (nach Carl Runge und Wilhelm Kutta) ist ein spezielles explizites 4-stufiges Runge-Kutta-Verfahren zur numerischen Lösung von Anfangswertproblemen (Gewöhnliche Differentialgleichungen). Eine abkürzende Bezeichnung dieses Verfahrens lautet RK4. Runge hat als erster (1895) ein mehrstufiges Verfahren angegeben und Kutta die allgemeine Form expliziter s-stufiger Verfahren.
Das klassische Runge-Kutta-Verfahren verwendet – wie die weitaus meisten numerischen Lösungsverfahren für Differentialgleichungen – den Ansatz, Ableitungen (Differentialquotienten) durch Differenzenquotienten zu approximieren. Die dabei bei nichtlinearen Funktionen notwendigerweise auftretenden Fehler (es werden sämtliche höheren Glieder der Taylor-Entwicklung vernachlässigt) können durch geeignete Kombinationen verschiedener Differenzquotienten reduziert werden. Das klassische Runge-Kutta-Verfahren ist eine solche Kombination, die Diskretisierungsfehler bis zur dritten Ableitung kompensiert.