Lindeberg-Bedingung

Die Lindeberg-Bedingung ist ein Begriff aus der Stochastik. Erfüllt eine Folge von stochastisch unabhängigen Zufallsvariablen diese Bedingung, so gilt für sie der Zentrale Grenzwertsatz, auch wenn die Zufallsvariablen nicht zwingenderweise identisch verteilt sind. Allgemeiner lässt sich die Lindeberg-Bedingung auch für Schemata von Zufallsvariablen formulieren, hier ist dann sogar ein gewisses Maß an Abhängigkeit zwischen den Zufallsvariablen zulässig. Diese Formulierung spielt eine wichtige Rolle im zentralen Grenzwertsatz von Lindeberg-Feller, einer Verallgemeinerung des "gewöhnlichen" zentralen Grenzwertsatzes.

Die Lindeberg-Bedingung wurde nach dem finnischen Mathematiker Jarl Waldemar Lindeberg benannt. Eine weitere hinreichende Bedingung für den zentralen Grenzwertsatz ist die Ljapunow-Bedingung.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.