Logarithmische Normalverteilung
Die logarithmische Normalverteilung (kurz Log-Normalverteilung) ist eine kontinuierliche Wahrscheinlichkeitsverteilung für eine Variable, die nur positive Werte annehmen kann. Sie beschreibt die Verteilung einer Zufallsvariablen , wenn die mit dem Logarithmus transformierte Zufallsvariable normalverteilt ist. Sie bewährt sich als Modell für viele Messgrößen in Naturwissenschaften, Medizin und Technik, beispielsweise für Energien, Konzentrationen, Längen und Mengenangaben.
In Analogie zu einer normalverteilten Zufallsvariablen, die nach dem zentralen Grenzwertsatz als Summe vieler verschiedener Zufallsvariablen aufgefasst werden kann, entsteht eine logarithmisch normalverteilte Zufallsvariable durch das Produkt vieler positiver Zufallsvariablen. Somit ist die Log-Normalverteilung die einfachste Verteilungsart für multiplikative Zufallsprozesse. Da multiplikative Gesetze in den Naturwissenschaften, der Ökonomie und der Technik eine größere Rolle spielen als additive, ist die Log-Normalverteilung in vielen Anwendungen diejenige, die der Theorie am besten entspricht – der zweite Grund, weshalb sie vielfach anstelle der gewöhnlichen, additiven Normalverteilung verwendet werden sollte.