Poinsotsche Konstruktion

Die Poinsot’sche Konstruktion nach Louis Poinsot modelliert die Bewegung des kräftefreien Kreisels als gleitungsloses Abrollen des Energieellipsoids auf einer festen invariablen Ebene, siehe Abb. 1.

Die im Massenmittelpunkt aufgetragene Winkelgeschwindigkeit endet im Pol (griechisch πόλος pólos „Achse“). Dieser bewegt sich im körperfesten System auf geschlossenen Kurven, den Polhodien („Polpfade“ von ὁδός hodós „Weg, Pfad, Straße“), die auf dem Energieellipsoid oder Poinsotellipsoid liegen. Je nachdem, ob die Polhodien die Hauptträgheitsachse mit dem kleinsten oder dem größten Hauptträgheitsmoment umschließen, werden die Polhodien epi- bzw. perizykloidisch genannt. Die Polhodie im Abb. 1 ist epizykloidisch. Im raumfesten Inertialsystem berührt die Winkelgeschwindigkeit im Pol die invariable Ebene und zeichnet die Herpolhodien nach („Schlängelwege des Pols“ von ἕρπω hérpo „kriechen“). Die invariable Ebene tangiert jederzeit das Poinsotellipsoid.

Die genannten Elemente bilden die Poinsot’sche Konstruktion und ihr Zeitverlauf definiert die Poinsot’sche Bewegung. Durch die Poinsot’sche Konstruktion wird die Untersuchung der Drehbewegung von Starrkörpern zu einer geometrischen Aufgabe.

Animationen
Epizykloidische BewegungPerizykloidische Bewegung Bewegung nahe der Separatrix,
siehe Dschanibekow-Effekt
Anders als in den Animationen dargestellt, bezieht sich der Drehimpuls jeweils auf den Massenmittelpunkt.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.