Stabilität (Numerik)

In der numerischen Mathematik heißt ein Verfahren stabil, wenn es unempfindlich ist gegenüber kleinen Störungen der Daten. Insbesondere bedeutet dies, dass sich Rundungsfehler (siehe auch Maschinengenauigkeit) nicht zu stark auf die Berechnung auswirken.

Bei der numerischen Lösung mathematischer Probleme unterscheidet man Kondition, Stabilität und Konsistenz. Stabilität ist dabei eine Eigenschaft des Algorithmus, Kondition eine Eigenschaft des Problems. Zwischen diesen Größen besteht folgende Beziehung:

Es sei

  • das mathematische Problem in Abhängigkeit von der Eingabe
  • der numerische Algorithmus
  • die gestörten Eingabedaten:
Kondition: Wie stark schwankt das Problem bei Störung?
Stabilität: Wie stark schwankt der numerische Algorithmus bei Störung?
Konsistenz: Wie gut löst der Algorithmus (mit exakter Eingabe) tatsächlich das Problem?
Konvergenz: Wie gut löst der gestörte Algorithmus tatsächlich das Problem?

Also beschreibt die Stabilität die Robustheit des numerischen Verfahrens gegenüber Störungen in den Eingabedaten, insbesondere bedeutet dies, dass sich Rundungsfehler nicht summieren und zu Störungen in der Lösung führen. Die Quantifizierung des Begriffes ist jedoch nach Problem und verwendeter Norm unterschiedlich.

Im Regelfall folgt aus Stabilität und Konsistenz (manchmal noch mit einer kleinen Zusatzvoraussetzung) die Konvergenz der numerischen Lösung gegen die analytische Lösung, da sowohl die Fehler der Eingabedaten als auch die Fehler durch die Diskretisierung des Problems gedämpft werden.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.