List of nuclides

This list of nuclides shows observed nuclides that either are stable or, if radioactive, have half-lives longer than one hour. This includes isotopes of the first 105 elements, except for 87 (francium), 102 (nobelium) and 104 (rutherfordium). More than 5,000 nuclides have been experimentally characterized, including isomers, of which this page presently includes 987.

Introduction

There are presently 251 known stable nuclides. Many of these in theory could decay through spontaneous fission, alpha decay, double beta decay, etc. with a very long half-life, but this has not yet been observed. Thus, the number of stable nuclides is subject to change if some of these 251 have radioactive decay observed in the future. In this article, the "stable" nuclides are divided into three tables: one for nuclides that are theoretically stable (meaning no decay mode is possible) except to spontaneous fission, which is not considered plausible in this mass range; one for nuclides that can theoretically undergo forms of decay other than spontaneous fission but have no published lower bound on lifetime from experimental evaluations; and one for nuclides that can theoretically decay and have been examined without detecting any decay, allowing a lower bound to be published. In this last table, where a decay has been predicted theoretically but never observed experimentally (either directly or by finding an excess of the daughter), the theoretical decay mode is given in parentheses, and "> (lifetime in years)" is shown in the half-life column to show this lower limit in scientific notation. Such nuclides are considered to be "stable", also called "observationally stable" indicating the tentative nature of the conclusion, until some decay has been observed. For example, tellurium-123 was reported to be radioactive, but the same experimental group later retracted this report, and it is again listed as stable.

The next group is the primordial radioactive nuclides. These have been measured to be radioactive, or decay products have been identified in natural samples (tellurium-128, barium-130). There are 35 of these (see these nuclides), of which 25 have half-lives longer than 1013 years. For most of these 25, decay is difficult to observe, and for most purposes they can be regarded as effectively stable. Bismuth-209 is notable as it is the only naturally occurring isotope of an element long considered stable. The other 10, platinum-190, samarium-147, lanthanum-138, rubidium-87, rhenium-187, lutetium-176, thorium-232, uranium-238, potassium-40, and uranium-235, have half-lives between 7×108 and 5×1011 years, which means they have undergone at least 0.5% depletion since the formation of the Solar System about 4.6×109 years ago, but still exist on Earth in significant quantities. They are the primary source of radiogenic heating and radioactive decay products. Together, there are a total of 286 primordial nuclides.[a]

The list then covers the other radionuclides with half-lives longer than 1 hour, split into several tables in order of successively shorter lifetimes.

Some nuclides that have half-lives too short to be primordial can be detected in nature as a result of later production by natural processes, mostly in trace amounts. These include radionuclides occurring in the decay chains of primordial uranium and thorium (radiogenic nuclides), such as radon-222. Others are the products of interactions with energetic cosmic rays (the cosmogenic nuclides), such as carbon-14. This gives a total of about 350 naturally occurring nuclides, some of which are difficult to detect. Other nuclides may be occasionally produced naturally by rare cosmogenic interactions or as a result of other natural nuclear reactions (nucleogenic nuclides), and these are generally even less detectable.

Non-primordial nuclides may also be detected in the spectra of stars; technetium is well established,[2] and others have been claimed. The remaining nuclides are known solely from artificial nuclear transmutations. Some, such as caesium-137 and krypton-85, are detected in the environment, but only (or practically only) from deliberate or accidental release of artificial production, as fission products (from nuclear weapons or nuclear reactors), for industrial or medical uses, or otherwise.

List legend

Each group of radionuclides, starting with the longest-lived primordial radionuclides, is sorted by decreasing half-life, but the tables are sortable by other columns. All columns sort by usual lexicographical order; in the case of the nuclide column this gives order on the mass number A.

No. (number) column
A running positive integer for reference, equal to the position in the tables. This number may change in the future, especially for nuclides with short lives, as better half-life estimates become available.
Nuclide column
Nuclide identifiers are given by their atomic mass number A and the symbol for the corresponding chemical element (corresponding to the unique proton number). In the cases that this is not the ground state, this is indicated by a m for metastable appended to the mass number; the conventional numbers are further appended to distinguish multiple metastable states but '1' is omitted if the others are much less stable.
A, Z, N columns
The total number of protons and neutrons together (A) and the separate numbers of protons (Z) and of neutrons (N).
Energy column
The column labeled "energy" denotes the energy equivalent of (the mass of a neutron minus the mass per nucleon), that is of the mass defect with respect to the neutron, in MeV. Use of the neutron as reference guarantees all nuclides will have a positive value. Mathematically: mnmnuclide / A. Note that this means that a higher "energy" value actually means that the nuclide has a lower energy. Inversely the mass is A (mnE / k) where E is the energy, mn is 1.0086649159 and k = 931.4941037 MeV (energy equivalent of the dalton). Omitted if there is no experimental mass determination within 0.0001.
Half-life column
The first column shows times in seconds; the second column in the more usual units (years, days, hours). As the first column is converted from the second, it is given enough digits to ensure consistent sorting.
Entries starting with a ">" indicates that no decay has ever been observed, with experiments having established lower limits on the half-life. Such elements are considered stable unless decay is observed (establishing an actual estimate for the half-life). Half-lives are imprecise estimates and may be subject to significant revision. When shown to a smaller than usual number of significant figures, it is not known accurately enough to justify more.
Decay mode column
α α decay
β β decay
ββ double β decay
ε electron capture
β+ β+ decay
β+β+ double β+ decay
SF spontaneous fission
IT isomeric transition
Decay modes in parentheses are given for observationally stable nuclides (these and these); they are then those allowed to occur by energy (in the next column), but spontaneous fission (and cluster decay, which is never shown in the tables) are neglected as they should never be observed for these nuclides. Those with multiple significant decay modes have the probability of each decay mode in percent given, in small figures, in parentheses; those less than 0.05% are rounded to zero and omitted, and 100 (>99.5% of observed decays) is not used but replaced by bold unless the only other decays are SF or double beta, assumed to be minority decays if not listed first. If more than one of α, β, β+/ε, IT is given without numbers or bold, one can assume no experimental data is available. Note that, by widely used convention, β+ (technically positron emission) includes ε, and conversely, if positron emission is energetically possible; the two are never separated on this page.
Decay energy column
Multiple values for decay energy for each given decay mode (skipping SF), in respective order. Decay energies are the whole energy difference to the ground state of the product, and so include energy lost to neutrinos. Further decays in a decay chain are not included.
Notes column
CG
Cosmogenic nuclide.
DP
Naturally occurring decay product (of thorium-232, uranium-238, or uranium-235), including products of neutron reactions other than fission.
ESS
Present in the early Solar System (first few million years), but extinct now as a primordial nuclide. Inherently overlaps with cosmogenic nuclides.
FP
Nuclear fission product [b], may occur naturally from spontaneous fission.
IM
Industry or medically used radionuclide.[3]

Of the 701 non-primordial nuclides in the tables below, 101 have the label FP (99 true fission products), 65 IM, 32 DP, 24 CG, 13 ESS, and 7 both CG and ESS.

Full list

The tables are based now on the standard reference NUBASE2020[4] and its companion, based on the same data, AME2020[5]. All observational data not otherwise cited should be found in those sources, or calculated from them, and only observed data, not theoretical extrapolations, should be present in these tables.

Theoretically stable nuclides

These are the theoretically stable nuclides, ordered by "energy".


No. Nuclide A Z N Energy
(MeV)
1 56Fe 56 26 30 9.153589
2 62Ni 62 28 34 9.147873
3 60Ni 60 28 32 9.145871
4 58Fe 58 26 32 9.142961
5 52Cr 52 24 28 9.137078
6 57Fe 57 26 31 9.127143
7 59Co 59 27 32 9.126060
8 54Cr 54 24 30 9.125677
9 61Ni 61 28 33 9.124138
10 55Mn 55 25 30 9.120637
11 64Ni 64 28 36 9.119740
12 66Zn 66 30 36 9.11525
13 53Cr 53 24 29 9.114481
14 63Cu 63 29 34 9.112269
15 65Cu 65 29 36 9.106144
16 68Zn 68 30 38 9.10084
17 50Ti 50 22 28 9.099956
18 51V 51 23 28 9.094908
19 67Zn 67 30 37 9.08446
20 48Ti 48 22 26 9.081588
21 72Ge 72 32 40 9.079456
22 70Ge 70 32 38 9.07935
23 69Ga 69 31 38 9.07607
24 88Sr 88 38 50 9.070428
25 74Ge 74 32 42 9.063513
26 49Ti 49 22 27 9.062420
27 76Se 76 34 42 9.061475
28 71Ga 71 31 40 9.05919
29 78Se 78 34 44 9.058830
30 90Zr 90 40 50 9.057680
31 89Y 89 39 50 9.056837
32 86Sr 86 38 48 9.054145
33 82Kr 82 36 46 9.054145
34 84Kr 84 36 48 9.052739
35 73Ge 73 32 41 9.047997
36 87Sr 87 38 49 9.046951
37 75As 75 33 42 9.04511
38 80Kr 80 36 44 9.044987
39 77Se 77 34 43 9.040143
40 85Rb 85 37 48 9.037993
41 91Zr 91 40 51 9.037204
42 83Kr 83 36 47 9.035061
43 79Br 79 35 44 9.03421
44 81Br 81 35 46 9.03400
45 92Zr 92 40 52 9.032829
46 46Ti 46 22 24 9.030628
47 47Ti 47 22 25 9.027437
48 44Ca 44 20 24 9.013789
49 94Mo 94 42 52 9.011893
50 93Nb 93 41 52 9.00909
51 96Mo 96 42 54 8.996265
52 95Mo 95 42 53 8.994601
53 42Ca 42 20 22 8.989111
54 38Ar 38 18 20 8.984866
55 45Sc 45 21 24 8.98404
56 97Mo 97 42 55 8.973841
57 98Ru 98 44 54 8.97157
58 43Ca 43 20 23 8.964548
59 100Ru 100 44 56 8.963592
60 99Ru 99 44 55 8.956423
61 34S 34 16 18 8.951662
62 40Ar 40 18 22 8.947316
63 102Ru 102 44 58 8.944910
64 101Ru 101 44 57 8.942190
65 41K 41 19 22 8.938624
66 39K 39 19 20 8.938169
67 104Pd 104 46 58 8.93089
68 37Cl 37 17 20 8.929738
69 103Rh 103 45 58 8.92599
70 36S 36 16 20 8.923100
71 106Pd 106 46 60 8.91950
72 105Pd 105 46 59 8.91339
73 35Cl 35 17 18 8.900276
74 108Pd 108 46 62 8.90025
75 107Ag 107 47 60 8.89755
76 110Cd 110 48 62 8.892664
77 30Si 30 14 16 8.885750
78 109Ag 109 47 62 8.88526
79 32S 32 16 16 8.884304
80 33S 33 16 17 8.876950
81 31P 31 15 16 8.859723
82 28Si 28 14 14 8.838918
83 29Si 29 14 15 8.826321
84 112Cd 112 48 64 8.880022
85 111Cd 111 48 63 8.875392
86 114Sn 114 50 64 8.865702
87 113In 113 49 64 8.862178
88 116Sn 116 50 66 8.860335
89 115Sn 115 50 65 8.854221
90 118Sn 118 50 68 8.848037
91 117Sn 117 50 67 8.843948
92 120Sn 120 50 70 8.830466
93 119Sn 119 50 69 8.828167
94 121Sb 121 51 70 8.81181
95 122Te 122 52 70 8.81159
96 124Te 124 52 72 8.80135
97 123Sb 123 51 72 8.79671
98 126Te 126 52 74 8.78611
99 125Te 125 52 73 8.78349
100 128Xe 128 54 74 8.773354
101 127I 127 53 74 8.77197
102 130Xe 130 54 76 8.762706
103 129Xe 129 54 75 8.758885
104 132Xe 132 54 78 8.747674
105 131Xe 131 54 77 8.746231
106 134Ba 134 56 78 8.735124
107 133Cs 133 55 78 8.733506
108 136Ba 136 56 80 8.724900
109 135Ba 135 56 79 8.722064
110 137Ba 137 56 81 8.711620
111 138Ba 138 56 82 8.710896
112 27Al 27 13 14 8.708239
113 140Ce 140 58 82 8.700420
114 139La 139 57 82 8.698817
115 26Mg 26 12 14 8.694954
116 141Pr 141 59 82 8.68135
117 142Nd 142 60 82 8.676600
118 24Mg 24 12 12 8.651884
119 25Mg 25 12 13 8.599029
120 156Gd 156 64 92 8.536288
121 157Gd 157 64 93 8.522426
122 158Gd 158 64 94 8.518723
123 159Tb 159 65 94 8.508630
124 23Na 23 11 12 8.485660
125 163Dy 163 66 97 8.478563
126 164Dy 164 66 98 8.473560
127 22Ne 22 10 12 8.436078
128 20Ne 20 10 10 8.423415
129 16O 16 8 8 8.367381
130 21Ne 21 10 11 8.344260
131 19F 19 9 10 8.149605
132 17O 17 8 9 8.118892
133 18O 18 8 10 8.114808
134 12C 12 6 6 8.071318
135 15N 15 7 8 8.064556
136 14N 14 7 7 7.866788
137 13C 13 6 7 7.830933
138 4He 4 2 2 7.465089
139 11B 11 5 6 7.283345
140 10B 10 5 5 6.866257
141 9Be 9 4 5 6.810379
142 7Li 7 3 4 5.941732
143 6Li 6 3 3 5.723505
144 3He 3 2 1 3.094245
145 2H 2 1 1 1.503457
146 1H 1 1 0 0.782347


Observationally stable nuclides having theoretical decay modes other than spontaneous fission (no lower bounds)

Ordered by "energy".


No. Nuclide A Z N Energy Decay mode Decay energy
(MeV)
147 80Se 80 34 46 9.04331 β) 0.134
148 86Kr 86 36 50 9.039524 β) 1.257
149 84Sr 84 38 46 9.03143 +β+) 1.790
150 102Pd 102 46 56 8.933112 +β+) 1.203
151 36Ar 36 18 18 8.911083 +β+) 0.433
152 122Sn 122 50 72 8.80853 β) 0.373
153 150Sm 150 62 88 8.584993 (α) 1.450
154 152Sm 152 62 90 8.563180 (α) 0.220
155 154Gd 154 64 90 8.549931 (α) 0.920
156 155Gd 155 64 91 8.536288 (α) 0.081
157 164Er 164 68 96 8.473407 +β+, α) 0.025, 1.305
158 165Ho 165 67 98 8.464639 (α) 0.139
159 166Er 166 68 98 8.462427 (α) 0.832
160 167Er 167 68 99 8.450296 (α) 0.667
161 168Er 168 68 100 8.446254 (α) 0.553
162 169Tm 169 69 100 8.433890 (α) 1.198
163 170Yb 170 70 100 8.428753 (α) 1.735
164 171Yb 171 70 101 8.418142 (α) 1.558
165 172Yb 172 70 102 8.415827 (α) 1.309
166 173Yb 173 70 103 8.403984 (α) 0.945
167 174Yb 174 70 104 8.398585 (α) 0.738
168 175Lu 175 71 104 8.386551 (α) 1.620
169 181Ta 181 73 108 8.338937 (α) 1.520
170 185Re 185 75 110 8.308178 (α) 2.195
171 191Ir 191 77 114 8.263511 (α) 2.083
172 194Pt 194 78 116 8.250494 (α) 1.523
173 193Ir 193 77 116 8.250263 (α) 1.018
174 195Pt 195 78 117 8.239492 (α) 1.176
175 196Pt 196 78 118 8.237872 (α) 0.813
176 197Au 197 79 118 8.229388 (α) 0.972
177 198Hg 198 80 118 8.227653 (α) 1.381
178 199Hg 199 80 119 8.219791 (α) 0.823
179 200Hg 200 80 120 8.218835 (α) 0.716
180 201Hg 201 80 121 8.208942 (α) 0.332
181 202Hg 202 80 122 8.206691 (α) 0.134
182 203Tl 203 81 122 8.198221 (α) 0.908
183 204Hg 204 80 124 8.192348 β) 0.420
184 205Tl 205 81 124 8.187517 (α) 0.155


Observationally stable nuclides having theoretical decay modes other than spontaneous fission, for which those decays have experimental lower bounds

Ordered by the given lower bound on half-life. These should not be considered authoritative without consulting the original source (footnote, or if none, that given in [4]) as exactly what was measured and how are not reflected here, and some of the values may be misinterpretations. Further, in all cases, this is not an indicator of the probable half-life, which may be much longer (especially for alpha decay), but only the experiment's ability to measure it.


No. Nuclide A Z N Energy Half-life
(seconds)
Half-life
(years)[c]
Decay mode Decay energy
(MeV)
185 134Xe 134 54 80 8.728974 > 8.8×1029 > 2.8×1022[6] β) 0.824
186 40Ca 40 20 20 8.942478 > 3.1×1029 > 9.9×1021 +β+) 0.193
187 184W 184 74 110 8.319718 > 2.8×1029 > 8.9×1021 (α) 1.649
188 182W 182 74 108 8.336407 > 2.4×1029 > 7.7×1021 (α) 1.764
189 208Pb 208 82 126 8.175878 > 8.2×1028 > 2.6×1021 (α) 0.517
190 206Pb 206 82 124 8.186782 > 7.9×1028 > 2.5×1021 (α) 1.135
191 126Xe 126 54 72 8.77883 > 6.0×1028 > 1.9×1021[7] +β+) 0.918
192 207Pb 207 82 125 8.179782 > 6.0×1028 > 1.9×1021 (α) 0.392
193 120Te 120 52 68 8.81599 > 5.0×1028 > 1.6×1021 +β+) 1.736
194 106Cd 106 48 58 8.89332 > 3.5×1028 > 1.1×1021 +β+) 2.775
195 58Ni 58 28 30 9.109747 > 2.2×1028 > 7.0×1020 +β+) 1.926
196 183W 183 74 109 8.324683 > 2.1×1028 > 6.7×1020 (α) 1.672
197 104Ru 104 44 60 8.91839 > 2.0×1028 > 6.5×1020[8] β) 1.299
198 54Fe 54 26 28 9.113070 > 1.4×1028 > 4.4×1020[9] +β+) 0.681
199 132Ba 132 56 76 8.741279 > 9.5×1027 > 3.0×1020 +β+) 0.844
200 110Pd 110 46 64 8.874326 > 9.1×1027 > 2.9×1020 β) 2.017
201 92Mo 92 42 50 9.014890 > 6.0×1027 > 1.9×1020 +β+) 1.650
202 204Pb 204 82 122 8.194405 > 4.4×1027 > 1.4×1020[10] (α) 1.969
203 112Sn 112 50 62 8.862881 > 3.1×1027 > 9.7×1019[11] +β+) 1.920
204 96Ru 96 44 52 8.967989 > 2.5×1027 > 8.0×1019 +β+) 2.715
205 192Os 192 76 116 8.25821 > 1.7×1027 > 5.3×1019 β, α) 0.406, 0.361
206 198Pt 198 78 120 8.22235 > 1.0×1027 > 3.2×1019[12] β, α) 1.050, 0.106
207 160Gd 160 64 96 8.495956 > 9.8×1026 > 3.1×1019 β) 1.730
208 186W 186 74 112 8.299859 > 7.3×1026 > 2.3×1019[13] β, α) 0.491, 1.116
209 144Sm 144 62 82 8.64052 > 4.4×1026 > 1.4×1019[14] +β+) 1.782
210 190Os 190 76 114 8.275043 > 3.8×1026 > 1.2×1019[15] (α) 1.376
211 64Zn 64 30 34 9.102631 > 3.5×1026 > 1.1×1019[13] +β+) 1.095
212 74Se 74 34 40 9.047172 > 2.2×1026 > 7.0×1018[16] +β+) 1.209
213 70Zn 70 30 40 9.06510 > 1.2×1026 > 3.8×1018 β) 0.997
214 188Os 188 76 112 8.290134 > 1.0×1026 > 3.3×1018[15] (α) 2.143
215 143Nd 143 60 83 8.658747 > 9.8×1025 > 3.1×1018 (α) 0.530
216 148Nd 148 60 88 8.59435 > 9.5×1025 > 3.0×1018 β, α) 1.928, 0.599
217 142Ce 142 58 84 8.66662 > 9.1×1025 > 2.9×1018 β, α) 1.417, 1.304
218 179Hf 179 72 107 8.353234 > 8.5×1025 > 2.7×1018[17] (α) 1.808
219 196Hg 196 80 116 8.23370 > 7.9×1025 > 2.5×1018 +β+, α) 0.819, 2.038
220 154Sm 154 62 92 8.541809 > 7.3×1025 > 2.3×1018 β) 1.251
221 146Nd 146 60 86 8.625605 > 5.0×1025 > 1.6×1018 β, α) 0.070, 1.182
222 50Cr 50 24 26 9.076545 > 4.1×1025 > 1.3×1018 +β+) 1.171
223 178Hf 178 72 106 8.365899 > 4.1×1025 > 1.3×1018[17] (α) 2.084
224 177Hf 177 72 105 8.370079 > 3.5×1025 > 1.1×1018[17] (α) 2.246
225 156Dy 156 66 90 8.523430 > 3.2×1025 > 1.0×1018[n 1] +β+, α) 2.006, 1.753
226 153Eu 153 63 90 8.550844 > 1.8×1025 > 5.5×1017 (α) 0.272
227 180Hf 180 72 108 8.347871 > 1.5×1025 > 4.6×1017[17] (α) 1.287
228 108Cd 108 48 60 8.89773 > 1.3×1025 > 4.1×1017 +β+) 0.272
229 170Er 170 68 102 8.424892 > 1.3×1025 > 4.1×1017 β, α) 0.656, 0.052
230 138Ce 138 58 80 8.705854 > 1.3×1025 > 4.0×1017[19] +β+) 0.696
231 180mTa 180 73 107 8.342753 > 9.1×1024 > 2.9×1017[20] , ε, IT, α) 0.778, 0.921, 0.075, 2.099
232 176Hf 176 72 104 8.381411 > 8.5×1024 > 2.7×1017[17] (α) 2.254
233 46Ca 46 20 26 9.00914 > 5.7×1024 > 1.8×1017[21] β) 0.987
234 176Yb 176 70 106 8.375246 > 5.0×1024 > 1.6×1017 β, α) 1.085, 0.567
235 94Zr 94 40 54 8.999715 > 3.5×1024 > 1.1×1017 β) 1.145
236 124Sn 124 50 74 8.78286 > 3.2×1024 > 1.0×1017 β) 2.293
237 162Dy 162 66 96 8.492190 > 3.2×1024 > 1.0×1017[18] (α) 0.084
238 136Ce 136 58 78 8.707410 > 3.0×1024 > 9.6×1016[19] +β+) 2.379
239 114Cd 114 48 66 8.860923 > 2.9×1024 > 9.2×1016 β) 0.545
240 123Te 123 52 71 8.79629 > 2.9×1024 > 9.2×1016[22] (ε) 0.052
241 145Nd 145 60 85 8.632918 > 1.9×1024 > 6.0×1016 (α) 1.574
242 192Pt 192 78 114 8.26032 > 1.9×1024 > 6.0×1016 (α) 2.424
243 161Dy 161 66 95 8.494023 > 1.1×1024 > 3.5×1016[18] (α) 0.343
244 160Dy 160 66 94 8.506771 > 2.7×1023 > 8.5×1015[18] (α) 0.438
245 189Os 189 76 113 8.277597 > 1.1×1023 > 3.5×1015[15] (α) 1.976
246 187Os 187 76 111 8.291741 > 1.0×1023 > 3.2×1015[15] (α) 2.722
247 149Sm 149 62 87 8.589009 > 6.3×1022 > 2.0×1015 (α) 1.871
248 158Dy 158 66 92 8.51693 > 3.2×1022 > 1.0×1015[18] +β+, α) 0.283, 0.874
249 162Er 162 68 94 8.480788 > 4.4×1021 > 1.4×1014 +β+, α) 1.847, 1.648
250 168Yb 168 70 98 8.437865 > 4.1×1021 > 1.3×1014 +β+, α) 1.409, 1.938
251 98Mo 98 42 56 8.970461 > 3.2×1021 > 1.0×1014 β) 0.109


  1. ^ Nubase value, for alpha decay only. Double electron capture limited only to 6.1×1014 (ground state) by [18]

Primordial radioactive nuclides (half-life > 108 years)

Ordered by half-life.


No. Nuclide A Z N Energy Half-life
(seconds)
Half-life
(years)[c]
Decay mode Decay energy
(MeV)
252 128Te 128 52 76 8.766582 7.10×1031 2.25×1024 ββ 0.867
253 124Xe 124 54 70 8.77829 3.47×1029 1.1×1022[23] εε 2.857
254 78Kr 78 36 42 9.022322 2.90×1029 9.2×1021 εε 2.848
255 136Xe 136 54 82 8.692917 6.88×1028 2.18×1021 ββ 2.458
256 76Ge 76 32 44 9.034646 6.375×1028 2.02×1021 ββ 2.039
257 130Ba 130 56 74 8.742524 3.2×1028 1×1021[n 1] εε 2.624
258 130Te 130 52 78 8.743264 2.496×1028 7.9×1020 ββ 2.528
259 82Se 82 34 48 9.017585 2.764×1027 8.76×1019 ββ 2.998
260 48Ca 48 20 28 8.992670 1.767×1027 5.6×1019 ββ 4.268
261 116Cd 116 48 68 8.836081 8.489×1026 2.69×1019 ββ 2.813
262 209Bi 209 83 126 8.158680 6.343×1026 2.01×1019 α 3.137
263 96Zr 96 40 56 8.961306 7.384×1026 2.34×1019 ββ 3.356
264 150Nd 150 60 90 8.562518 2.935×1026 9.3×1018 ββ 3.371
265 100Mo 100 42 58 8.933248 2.231×1026 7.07×1018 ββ 3.034
266 151Eu 151 63 88 8.565709 1.452×1026 4.6×1018 α 1.964
267 180W 180 74 106 8.347075 5.018×1025 1.59×1018[26] α 2.515
268 50V 50 23 27 9.055783 8.552×1024 2.71×1017 β+ [n 2] 2.209
269 174Hf 174 72 102 8.39226 1.199×1024 3.8×1016[27] α 2.494
270 113Cd 113 48 65 8.859312 2.537×1023 8.04×1015 β 0.324
271 148Sm 148 62 86 8.607373 1.988×1023 6.3×1015 α 1.987
272 144Nd 144 60 84 8.651026 7.227×1022 2.29×1015 α 1.901
273 186Os 186 76 110 8.302501 6.3×1022 2.0×1015 α 2.821
274 115In 115 49 66 8.849895 1.392×1022 4.41×1014 β 0.497
275 152Gd 152 64 88 8.562813 3.408×1021 1.08×1014 α 2.204
276 184Os 184 76 108 8.311821 3.53×1020 1.12×1013 α 2.959
277 190Pt 190 78 112 8.267668 1.524×1019 4.83×1011 α 3.269
278 147Sm 147 62 85 8.610543 3.364×1018 1.066×1011 α 2.311
279 138La 138 57 81 8.698227 3.250×1018 1.03×1011 β+ (65), β (35) 1.748, 1.053
280 87Rb 87 37 50 9.043707 1.568×1018 4.97×1010 β 0.282
281 187Re 187 75 112 8.291727 1.313×1018 4.16×1010 β 0.0026
282 176Lu 176 71 105 8.374627 1.168×1018 3.70×1010 β[n 3] 1.194
283 232Th 232 90 142 7.918531 4.418×1017 1.40×1010 α, SF 4.083
284 238U 238 92 146 7.872546 1.408×1017 4.463×109 α, SF, ββ 4.270, 1.145
285 40K 40 19 21 8.909706 3.938×1016 1.248×109 β (89), β+ (11) 1.311, 1.504
286 235U 235 92 143 7.897196 2.222×1016 7.04×108 α, SF 4.679


  1. ^ The two experimental values[24][25] are discordant, with a total range of (0.5–2.7)×1021 years; the value in the table is a rough average.
  2. ^ Also theoretically capable of β decay
  3. ^ Theoretically capable of electron capture[28]

Radionuclides with half-lives of 104 years to 108 years

Ordered by half-life. Some of these are known to have been present in the early Solar System (marked "ESS", meaning the first few million years of the Solar System's history) from an excess of their decay products.[29]


No. Nuclide Z N Energy Half-life
(seconds)
Half-life
(years)[c]
Decay mode Notes
287 146Sm 62 84 8.62609 2.903×1015 9.20×107[1] α ESS[29]
288 244Pu 94 150 7.826212 2.566×1015 8.13×107 α, SF (0.12) interstellar,[30] ESS[29]
289 92Nb 41 51 9.01103 1.095×1015 3.47×107 β+ CG,[31] ESS[29]
290 236U 92 144 7.891468 7.391×1014 2.342×107 α, SF DP
291 205Pb 82 123 8.187270 5.365×1014 1.70×107 β+ ESS[29]
292 129I 53 76 8.75742 5.093×1014 1.614×107 β CG, FP, ESS[29]
293 247Cm 96 151 7.80600 4.923×1014 1.56×107 α ESS[29]
294 182Hf 72 110 8.32434 2.809×1014 8.90×106 β ESS[29]
295 107Pd 46 61 8.89723 2.051×1014 6.5×106 β FP, ESS[29]
296 97Tc 43 54 8.97053 1.329×1014 4.21×106 β+
297 98Tc 43 55 8.95328 1.325×1014 4.2×106 β
298 53Mn 25 28 9.103211 1.168×1014 3.7×106 β+ CG, ESS[29]
299 210mBi 83 127 8.140464 9.594×1013 3.04×106 α
300 60Fe 26 34 9.09487 8.268×1013 2.62×106 β CG,[32] interstellar,[33] ESS[29]
301 237Np 93 144 7.881986 6.766×1013 2.144×106 α, SF DP
302 150Gd 64 86 8.57641 5.649×1013 1.79×106 α
303 93Zr 40 53 9.008114 5.081×1013 1.61×106 β FP
304 154Dy 66 88 8.52842 4.418×1013 1.40×106[34] α
305 10Be 4 6 6.810569 4.377×1013 1.387×106 β CG, ESS[29]
306 135Cs 55 80 8.720074 4.197×1013 1.33×106 β FP
307 26Al 13 13 8.540939 2.263×1013 7.17×105 β+ CG, ESS[29]
308 242Pu 94 148 7.845215 1.183×1013 3.75×105 α, SF
309 208Bi 83 125 8.16204 1.161×1013 3.68×105 β+
310 248Cm 96 152 7.799573 1.098×1013 3.48×105 α (92), SF (8.4)
311 79Se 34 45 9.032299 1.032×1013 3.3×105 β FP
312 36Cl 17 19 8.891374 9.499×1012 3.01×105 β (98), β+ (1.9) CG, IM
313 234U 92 142 7.908305 7.747×1012 2.455×105 α, SF DP
314 126Sn 50 76 8.75398 7.258×1012 2.3×105 β FP
315 81Kr 36 45 9.03053 7.227×1012 2.29×105 β+ CG
316 99Tc 43 56 8.953418 6.662×1012 2.111×105 β FP
317 186mRe 75 111 8.295937 6.312×1012 2×105 IT
318 233U 92 141 7.912867 5.024×1012 1.592×105 α, SF DP
319 236Np 93 143 7.8875 4.828×1012 1.53×105 β+ (86), β (14), α (0.16)
320 41Ca 20 21 8.928340 3.137×1012 9.9×104 β+ CG, ESS[29]
321 59Ni 28 31 9.107874 2.556×1012 8.1×104 β+
322 230Th 90 140 7.937133 2.379×1012 7.54×104 α, SF DP
323 137La 57 80 8.70738 1.893×1012 6×104 β+
324 202Pb 82 120 8.19974 1.657×1012 5.25×104 β+
325 231Pa 91 140 7.926624 1.030×1012 3.27×104 α, SF DP
326 239Pu 94 145 7.868020 7.609×1011 2.411×104 α, SF DP, IM
327 94Nb 41 53 8.99014 6.438×1011 2.04×104 β CG[31]


Radionuclides with half-lives of 10 years to 104 years

Ordered by half-life.


No. Nuclide Z N Energy Half-life
(seconds)
Half-life
(years)[c]
Decay mode Notes
328 250Cm 96 154 7.77936 2.62×1011 8300[n 1] SF, α, β
329 245Cm 96 149 7.822320 2.60×1011 8250 α, SF
330 229Th 90 139 7.94212 2.498×1011 7920 α DP
331 243Am 95 148 7.836030 2.319×1011 7350 α, SF
332 240Pu 94 146 7.862463 2.070×1011 6561 α, SF
333 14C 6 8 7.855611 1.799×1011 5700 β CG, IM
334 93Mo 42 51 9.004728 1.53×1011 4839[36] β+
335 246Cm 96 150 7.816778 1.485×1011 4700 α, SF
336 163Ho 67 96 8.478545 1.442×1011 4570 β+
337 226Ra 88 138 7.966594 5.049×1010 1600 α DP
338 247Bk 97 150 7.80618 4.35×1010 1380 α, SF
339 166mHo 67 99 8.451224 3.574×1010 1133 β
340 251Cf 98 153 7.77596 2.83×1010 900 α, SF
341 91Nb 41 50 9.02338 2.15×1010 680 β+
342 194Hg 80 114 8.23722 1.41×1010 450 β+
343 108mAg 47 61 8.88148 1.385×1010 439 β+ (91), IT (8.7)
344 241Am 95 146 7.851674 1.364×1010 432.6 α, SF IM
345 249Cf 98 151 7.791307 1.108×1010 351 α, SF
346 39Ar 18 21 8.9237 8.457×109 268[n 2] β CG
347 192m2Ir 77 115 8.251878 7.605×109 241 IT
348 158Tb 65 93 8.511007 5.68×109 180 β+ (83), β (17)
349 32Si 14 18 8.823746 4.95×109 157 β CG
350 242mAm 95 147 7.841911 4.450×109 141 IT, α (0.46), SF
351 209Po 84 125 8.149624 3.913×109 124 α, β+ (0.45)
352 63Ni 28 35 9.111205 3.194×109 101 β IM
353 151Sm 62 89 8.565202 2.985×109 94.6 β FP
354 238Pu 94 144 7.877355 2.768×109 87.7 α, SF DP, IM
355 148Gd 64 84 8.58665 2.74×109 86.9[37] α
356 157Tb 65 92 8.522043 2.24×109 71 β+
357 232U 92 140 7.922140 2.174×109 68.9 α, SF
358 44Ti 22 22 8.92470 1.865×109 59.1 β+
359 193Pt 78 115 8.249969 1.58×109 50 β+
360 121mSn 50 71 8.808428 1.385×109 43.9 IT (78), β (22) FP
361 150Eu 63 87 8.56993 1.164×109 36.9 β+
362 42Ar 18 24 8.8909 1.038×109 32.9 β
363 207Bi 83 124 8.16820 9.852×108 31.22 β+
364 178m2Hf 72 106 8.352157 9.783×108 31 IT
365 137Cs 55 82 8.703039 9.480×108 30.04 β FP, IM
366 243Cm 96 147 7.836002 9.183×108 29.1 α, β+ (0.3), SF
367 90Sr 38 52 9.02633 9.123×108 28.91 β FP, IM
368 210Pb 82 128 8.141453 7.006×108 22.2 β, α DP, IM
369 227Ac 89 138 7.957444 6.871×108 21.772 β (99), α (1.4) DP
370 244Cm 96 148 7.831762 5.715×108 18.11 α, SF
371 145Pm 61 84 8.63178 5.586×108 17.7 β+, α
372 93mNb 41 52 9.00876 5.087×108 16.1 IT FP
373 241Pu 94 147 7.851587 4.522×108 14.33 β, α, SF
374 113mCd 48 65 8.845980 4.383×108 13.9 β, IT (0.10) FP
375 152Eu 63 89 8.550848 4.266×108 13.517 β+ (72), β (28)
376 250Cf 98 152 7.786637 4.128×108 13.08 α, SF (0.08)
377 3H 1 2 3.088048 3.888×108 12.32 β CG, IM
378 85Kr 36 49 9.02991 3.385×108 10.728 β FP, IM
379 133Ba 56 77 8.729615 3.326×108 10.538 β+


  1. ^ Only SF has been observed with a half-life 11,300 years; the value given theoretically estimates alpha- and beta-decay branches, which is quite uncertain.[35]
  2. ^ Nubase value. However, a recent direct study: P. Adhikari; et al. (2025). "Direct Measurement of the Half-Life of 39Ar from 3.4 Years of Data with the DEAP-3600 Detector". The European Physical Journal C. 85 (7): 728. doi:10.1140/epjc/s10052-025-14289-5. found 302 years, a statistically significant discrepancy to be explained.

Radionuclide with unknown half-life

No decay has been observed, but not primordial so does not qualify as "observationally stable".

No. Nuclide Z N Energy
(MeV)
Half-life
(seconds)
Half-life
(years)[c]
Decay modes Notes
380 248Bk 97 151 7.7966 > 2.84×108 > 9 y[d] α, β, β+

Radionuclides with half-lives of 1 day to 10 years

Ordered by half-life. The second half-life column in this table has been made unsortable, as the mixture of days and years will not sort properly. Resorting by half-life may be done no less by using the number or the half-life in seconds columns.


No. Nuclide Z N Energy Half-life
(seconds)
Half-life
[c]
Decay mode Notes
381 154Eu 63 91 8.537152 2.711×108 8.592 y β, β+ FP
382 194Os 76 118 8.23851 1.893×108 6.0 y β
383 228Ra 88 140 7.944387 1.815×108 5.75 y β DP
384 146Pm 61 85 8.61552 1.745×108 5.53 y β+ (66), β (34)
385 60Co 27 33 9.098825 1.664×108 5.271 y β IM
386 155Eu 63 92 8.534662 1.496×108 4.742 y β FP
387 101Rh 45 56 8.93678 1.284×108 4.07 y β+
388 204Tl 81 123 8.190662 1.194×108 3.78 y β (97), β+ (2.9) IM
389 102mRh 45 57 8.92075 1.181×108 3.74 y β+, IT (0.2)
390 174Lu 71 103 8.390688 1.045×108 3.31 y β+
391 208Po 84 124 8.155305 9.145×107 2.898 y α, β+
392 236Pu 94 142 7.889532 9.019×107 2.858 y α, SF
393 125Sb 51 74 8.77736 8.702×107 2.758 y β FP
394 55Fe 26 29 9.116434 8.698×107 2.756 y β+
395 252Cf 98 154 7.769593 8.347×107 2.645 y α (97), SF (3.1) IM
396 147Pm 61 86 8.609019 8.279×107 2.623 y β FP
397 22Na 11 11 8.306836 8.211×107 2.602 y β+ CG
398 134Cs 55 79 8.719760 6.517×107 2.065 y β, β+ FP
399 171Tm 69 102 8.417577 6.059×107 1.92 y β
400 228Th 90 138 7.953902 6.035×107 1.913 y α DP
401 172Hf 72 100 8.3992 5.901×107 1.87 y β+
402 179Ta 73 106 8.352645 5.743×107 1.82 y β+
403 173Lu 71 102 8.400110 4.323×107 1.37 y β+
404 252Es 99 153 7.7646 4.075×107 1.291 y α (78), β+ (22)
405 109Cd 48 61 8.88328 3.986×107 1.263 y β+
406 235Np 93 142 7.896667 3.422×107 1.084 y β+, α
407 106Ru 44 62 8.88569 3.212×107 1.018 y β FP
408 144Pm 61 83 8.63671 3.136×107 0.99 y β+
409 145Sm 62 83 8.62753 2.938×107 340 d β+
410 248Cf 98 150 7.80020 2.881×107 333.5 d α, SF
411 49V 23 26 9.05014 2.851×107 330 d β+
412 249Bk 97 152 7.790811 2.827×107 327.2 d β, α, SF
413 54Mn 25 29 9.10017 2.696×107 312.08 d β+, β IM
414 119mSn 50 69 8.827415 2.532×107 293.1 d IT FP
415 144Ce 58 86 8.62987 2.461×107 284.89 d β FP
416 254Es 99 155 7.74851 2.382×107 275.7 d α, β, SF
417 57Co 27 30 9.112471 2.348×107 271.81 d β+ IM
418 68Ge 32 36 9.05630 2.342×107 271.05 d β+ IM
419 143Pm 61 82 8.65146 2.290×107 265 d β+
420 110m2Ag 47 63 8.86532 2.159×107 249.86 d β (99), IT (1.3) IM
421 65Zn 30 35 9.085349 2.108×107 243.94 d β+ IM
422 153Gd 64 89 8.547677 2.079×107 240.6 d β+ IM
423 102Rh 45 57 8.92213 1.788×107 207 d β+ (78), β (22)
424 195Au 79 116 8.238329 1.607×107 186.01 d β+
425 184mRe 75 109 8.31062 1.531×107 177.25 d[38] IT (75), β+ (25)
426 194m2Ir 77 117 8.2371 1.477×107 171 d β
427 121mTe 52 69 8.8007 1.423×107 164.7 d IT (89), β+ (11)
428 242Cm 96 146 7.844857 1.407×107 162.8 d α, SF
429 45Ca 20 25 8.978256 1.405×107 162.61 d β
430 177m3Lu 71 106 8.361791 1.386×107 160.4 d β (77), IT (23)
431 159Dy 66 93 8.506332 1.248×107 144.4 d β+
432 174mLu 71 103 8.389706 1.227×107 142 d IT (99), ε (0.6)
433 210Po 84 126 8.147285 1.196×107 138.376 d α DP
434 139Ce 58 81 8.69691 1.189×107 137.64 d β+
435 123Sn 50 73 8.78526 1.116×107 129.2 d β FP
436 170Tm 69 101 8.423055 1.111×107 128.6 d β, β+ (0.13)
437 151Gd 64 87 8.56264 1.070×107 123.9 d β+, α
438 181W 74 107 8.337804 1.045×107 120.96 d β+
439 75Se 34 41 9.033478 1.035×107 119.78 d β+ IM
440 123mTe 52 71 8.79427 1.030×107 119.2 d IT
441 113Sn 50 63 8.85298 9.943×106 115.08 d β+
442 182Ta 73 109 8.326432 9.914×106 114.7 d β
443 88Y 39 49 9.02926 9.213×106 106.63 d β+
444 127mTe 52 75 8.76575 9.167×106 106.1 d IT (98), β (2.1) FP
445 257Fm 100 157 7.72661 8.683×106 100.5 d α, SF (0.2)
446 168Tm 69 99 8.43627 8.044×106 93.1 d β+, β
447 149Eu 63 86 8.58434 8.044×106 93.1 d β+
448 185Os 76 109 8.302701 8.031×106 92.95 d β+
449 97mTc 43 54 8.96953 7.871×106 91.1 d IT (96), ε (3.9)
450 35S 16 19 8.895496 7.549×106 87.37 d β CG
451 83Rb 37 46 9.02398 7.448×106 86.2 d β+
452 46Sc 21 25 8.97918 7.237×106 83.76 d β IM
453 88Zr 40 48 9.02165 7.206×106 83.4 d β+
454 73As 33 40 9.04328 6.938×106 80.3 d β+
455 56Co 27 29 9.072041 6.673×106 77.24 d β+
456 185W 74 111 8.305847 6.489×106 75.1 d β
457 192Ir 77 115 8.252754 6.378×106 73.82 d β (95), ε (4.8) IM
458 160Tb 65 95 8.495296 6.247×106 72.3 d β
459 58Co 27 31 9.10317 6.121×106 70.84 d β+
460 183Re 75 108 8.32165 6.048×106 70 d β+
461 175Hf 72 103 8.38264 6.039×106 69.90 d[39] β+
462 188W 74 114 8.27700 6.028×106 69.77 d β
463 85Sr 38 47 9.02547 5.603×106 64.846 d β+
464 95Zr 40 55 8.973001 5.532×106 64.032 d β FP
465 95mTc 43 52 8.97639 5.363×106 62.0 d β+ (96), IT (3.9)
466 91mNb 41 50 9.02223 5.258×106 60.86 d IT (97), ε (3.4)
467 254Cf 98 156 7.75108 5.227×106 60.5 d SF, α (0.3)
468 124Sb 51 73 8.77792 5.194×106 60.12 d β
469 125I 53 72 8.78201 5.131×106 59.392 d β+ IM
470 91Y 39 52 9.02023 5.055×106 58.51 d β FP
471 125mTe 52 73 8.78233 4.959×106 57.4 d IT FP
472 148Eu 63 85 8.58684 4.709×106 54.5 d β+, α
473 7Be 4 3 5.81860 4.598×106 53.22 d β+ CG
474 258Md[d] 101 157 7.71593 4.457×106 51.6 d α, SF
475 89Sr 38 51 9.039959 4.369×106 50.56 d β FP, IM
476 114mIn 49 65 8.846577 4.278×106 49.51 d IT (97), β+ (3.2)
477 146Gd 64 82 8.59246 4.171×106 48.27 d β+
478 203Hg 80 123 8.195797 4.027×106 46.61 d β
479 237Pu 94 143 7.881058 3.943×106 45.64 d β+, α
480 115mCd 48 67 8.835696 3.850×106 44.6 d β FP
481 59Fe 26 33 9.099538 3.845×106 44.50 d β IM
482 181Hf 72 109 8.333213 3.662×106 42.39 d β
483 105Ag 47 58 8.90057 3.567×106 41.29 d β+
484 148mPm 61 87 8.58975 3.567×106 41.29 d β (96), IT (4.2)
485 255Es 99 156 7.74156 3.439×106 39.8 d β (92), α (8.0), SF
486 103Ru 44 59 8.918572 3.391×106 39.245 d β FP
487 127Xe 54 73 8.76676 3.140×106 36.342 d β+
488 184Re 75 109 8.31164 3.059×106 35.4 d β+
489 37Ar 18 19 8.907742 3.025×106 35.01 d β+ CG
490 95Nb 41 54 8.984858 3.023×106 34.991 d β FP
491 129mTe 52 77 8.744957 2.903×106 33.6 d IT (64), β (36) FP
492 84Rb 37 47 9.02083 2.836×106 32.82 d β+ (96), β (3.9)
493 241Cm 96 145 7.848489 2.834×106 32.8 d β+ (99), α (1.0)
494 141Ce 58 83 8.677212 2.808×106 32.505 d β FP
495 169Yb 70 99 8.428570 2.766×106 32.014 d β+ IM
496 240Cm 96 144 7.855801 2.627×106 30 d α, SF
497 260Md 101 159 2.402×106 27.8 d SF
498 51Cr 24 27 9.080156 2.393×106 27.702 d β+ IM
499 233Pa 91 142 7.910419 2.331×106 26.98 d β DP
500 33P 15 18 8.86942 2.190×106 25.35 d β
501 82Sr 38 44 8.99827 2.190×106 25.35 d β+ IM
502 179m2Hf 72 107 8.347053 2.160×106 25.0 d IT
503 234Th 90 144 7.89776 2.083×106 24.11 d β DP
504 147Eu 63 84 8.59883 2.082×106 24.1 d β+, α
505 178W 74 104 8.35450 1.866×106 21.6 d β+
506 253Es 99 154 7.759024 1.769×106 20.47 d α, SF
507 230U 92 138 7.93386 1.748×106 20.23 d α
508 121Te 52 69 8.8031 1.668×106 19.31 d ε
509 227Th 90 137 7.957641 1.615×106 18.693 d α DP, IM
510 86Rb 37 49 9.033493 1.611×106 18.645 d β, β+
511 253Cf 98 155 7.75787 1.539×106 17.81 d β, α (0.3)
512 74As 33 41 9.02889 1.535×106 17.8 d β+ (66), β (34)
513 230Pa 91 139 7.93143 1.503×106 17.4 d β+ (92), β (7.8), α
514 103Pd 46 57 8.920415 1.468×106 16.99 d β+ IM
515 99Rh 45 54 8.9358 1.391×106 16.1 d β+
516 48V 23 25 8.99794 1.380×106 15.97 d β+
517 156Eu 63 93 8.52057 1.312×106 15.19 d β FP
518 191Os 76 115 8.261869 1.295×106 14.99 d β
519 205Bi 83 122 8.17408 1.288×106 14.91 d β+
520 225Ra 88 137 7.97357 1.280×106 14.8 d β, α[40] DP
521 32P 15 17 8.830846 1.233×106 14.269 d β CG, IM
522 117mSn 50 67 8.841259 1.204×106 13.94 d IT FP
523 143Pr 59 84 8.65221 1.172×106 13.57 d β FP
524 189Ir 77 112 8.27476 1.140×106 13.2 d β+
525 136Cs 55 81 8.70616 1.124×106 13.01 d β
526 126I 53 73 8.76902 1.117×106 12.93 d β+ (53), β (47)
527 140Ba 56 84 8.66609 1.102×106 12.753 d β FP
528 126Sb 51 75 8.7570 1.067×106 12.35 d β FP
529 202Tl 81 121 8.199934 1.064×106 12.31 d β+
530 131mXe 54 77 8.744980 1.032×106 11.95 d IT FP
531 190Ir 77 113 8.264758 1.015×106 11.751 d[41] β+
532 131Ba 56 75 8.732990 9.953×105 11.52 d β+
533 71Ge 32 39 9.05592 9.908×105 11.468 d[42] β+
534 223Ra 88 135 7.994039 9.880×105 11.435 d α DP, IM
535 147Nd 60 87 8.602929 9.487×105 10.98 d β FP
536 246Pu 94 152 7.80548 9.366×105 10.84 d β
537 193mIr 77 116 8.249847 9.098×105 10.53 d IT
538 188Pt 78 110 8.27249 8.778×105 10.2 d β+, α
539 92mNb 41 51 9.00956 8.740×105 10.12 d β+
540 225Ac 89 136 7.97515 8.570×105 9.919 d α DP, IM
541 131Cs 55 76 8.743498 8.371×105 9.69 d β+ IM
542 125Sn 50 75 8.75847 8.324×105 9.63 d β FP
543 169Er 68 101 8.431799 8.115×105 9.39 d β IM
544 149Gd 64 85 8.57553 8.018×105 9.28 d β+, α
545 167Tm 69 98 8.445828 7.992×105 9.25 d β+
546 129mXe 54 75 8.757054 7.672×105 8.88 d IT
547 206Po 84 122 8.15961 7.603×105 8.8 d β+ (95), α (5.4)
548 72Se 34 38 9.01393 7.258×105 8.40 d β+
549 106mAg 47 59 8.89068 7.154×105 8.28 d β+
550 171Lu 71 100 8.40950 7.125×105 8.25 d β+
551 131I 53 78 8.738820 6.934×105 8.025 d β FP, IM
552 257Es 99 158 6.653×105 7.7 d β, SF
553 111Ag 47 64 8.86605 6.422×105 7.43 d β FP
554 161Tb 65 96 8.490335 6.003×105 6.948 d β FP
555 237U 92 145 7.879799 5.834×105 6.752 d β DP
556 172Lu 71 101 8.40118 5.789×105 6.70 d β+
557 177Lu 71 106 8.367272 5.741×105 6.644 d β IM
558 132Cs 55 77 8.731566 5.599×105 6.48 d β+ (98), β (1.6)
559 206Bi 83 123 8.16854 5.394×105 6.243 d β+
560 196Au 79 117 8.23042 5.327×105 6.17 d β+ (93), β (7)
561 56Ni 28 28 9.033954 5.249×105 6.075 d β+
562 118Te 52 66 8.8145 5.184×105 6.00 d β+
563 145Eu 63 82 8.60919 5.124×105 5.93 d β+
564 120mSb[d] 51 69 4.977×105 5.76 d β+
565 52Mn 25 27 9.046537 4.831×105 5.591 d β+
566 148Pm 61 87 8.59068 4.638×105 5.368 d β
567 156Tb[d] 65 91 8.52062 4.622×105 5.35 d β+
568 133Xe 54 79 8.73029 4.534×105 5.247 d β FP, IM
569 155Tb 65 90 8.53100 4.523×105 5.235 d[43] β+
570 183Ta 73 110 8.318824 4.406×105 5.1 d β
571 210Bi 83 127 8.141756 4.330×105 5.012 d β, α DP
572 245Bk 97 148 7.819017 4.277×105 4.95 d β+, α (0.12)
573 119mTe 52 67 8.80176 4.061×105 4.70 d β+
574 146Eu 63 83 8.59952 3.983×105 4.61 d β+
575 47Ca 20 27 8.97227 3.919×105 4.536 d β
576 234Np 93 141 7.90057 3.802×105 4.4 d β+
577 101mRh 45 56 8.93523 3.752×105 4.34 d ε (93), IT (7.2)
578 193mPt 78 115 8.249193 3.741×105 4.33 d IT
579 96Tc 43 53 8.96530 3.698×105 4.28 d β+
580 231U 92 139 7.92497 3.629×105 4.2 d β+, α
581 175Yb 70 105 8.383864 3.616×105 4.185 d β
582 124I 53 71 8.77587 3.608×105 4.176 d β+ IM
583 195mPt 78 117 8.238163 3.465×105 4.010 d IT
584 127Sb 51 76 8.75398 3.326×105 3.85 d β FP
585 222Rn 86 136 7.997570 3.302×105 3.822 d α DP
586 186Re 75 111 8.296734 3.213×105 3.719 d β (93), ε (7.5) IM
587 224Ra 88 136 7.987274 3.138×105 3.632 d α DP
588 100Pd 46 54 8.9234 3.136×105 3.63 d β+
589 95mNb 41 54 8.982377 3.119×105 3.61 d IT (94), β (5.6) FP
590 166Dy 66 100 8.448333 2.938×105 3.40 d β
591 140Nd 60 80 8.67315 2.912×105 3.37 d β+
592 47Sc 21 26 9.01465 2.894×105 3.349 d β IM
593 87Y 39 48 9.02555 2.873×105 3.33 d β+
594 89Zr 40 49 9.02500 2.821×105 3.265 d β+
595 67Ga 31 36 9.06952 2.818×105 3.262 d β+ IM
596 132Te 52 80 8.71668 2.768×105 3.20 d β FP
597 134Ce 58 76 8.7044 2.730×105 3.16 d β+
598 199Au 79 120 8.217518 2.712×105 3.139 d β
599 201Tl 81 120 8.20655 2.628×105 3.042 d β+ IM
600 253Fm 100 153 7.757700 2.592×105 3.0 d β+ (88), α (12)
601 97Ru 44 53 8.95916 2.451×105 2.837 d β+
602 191Pt 78 113 8.25822 2.445×105 2.83 d β+
603 111In 49 62 8.86764 2.423×105 2.805 d β+ IM
604 99Mo 42 57 8.939703 2.374×105 2.747 d β FP, IM
605 122Sb 51 71 8.79537 2.353×105 2.724 d β (98), β+ (2.4)
606 71As 33 38 9.02756 2.350×105 2.721 d β+
607 197Hg 80 117 8.22634 2.337×105 2.705 d β+
608 198Au 79 119 8.220716 2.328×105 2.695 d β IM
609 182Re[d] 75 107 2.311×105 2.68 d β+
610 90Y 39 51 9.032395 2.306×105 2.669 d β FP, IM
611 172Tm 69 103 8.40489 2.290×105 2.65 d β
612 67Cu 29 38 9.07609 2.226×105 2.576 d β IM
613 44m3Sc 21 23 8.92461 2.110×105 2.442 d IT, β+
614 128Ba 56 72 8.73826 2.100×105 2.43 d β+
615 77Br 35 42 9.02242 2.053×105 2.377 d β+
616 166Yb 70 96 8.44237 2.041×105 2.363 d β+
617 239Np 93 146 7.864996 2.036×105 2.356 d β DP
618 177Ta 73 104 8.36349 2.029×105 2.348 d β+
619 153Tb 65 88 8.53742 2.022×105 2.34 d β+
620 66Ni 28 38 9.07141 1.966×105 2.28 d β
621 247Pu 94 153 1.961×105 2.27 d β
622 198m2Au 79 119 8.216616 1.963×105 2.27 d IT
623 115Cd 48 67 8.837270 1.925×105 2.228 d β FP
624 149Pm 61 88 8.58182 1.911×105 2.212 d β FP
625 133mXe 54 79 8.72854 1.899×105 2.20 d IT FP
626 203Pb 82 121 8.19342 1.869×105 2.164 d β+
627 240Am 95 145 7.85669 1.829×105 2.12 d β+, α
628 238Np 93 145 7.871929 1.814×105 2.099 d β
629 172Er 68 104 8.39971 1.775×105 2.05 d β
630 170Lu 71 99 8.4084 1.738×105 2.01 d β+
631 72Zn 30 42 9.01778 1.674×105 1.938 d β
632 153Sm 62 91 8.545567 1.666×105 1.929 d β FP, IM
633 202Pt 78 124 8.1837 1.584×105 1.83 d β
634 48Sc 21 27 8.9985 1.572×105 1.820 d β
635 246Bk 97 149 7.8113 1.555×105 1.80 d β+
636 195mHg 80 115 8.2295 1.498×105 1.733 d IT (54), β+ (46)
637 188Ir 77 111 8.27528 1.494×105 1.73 d β+
638 140La 57 83 8.673547 1.450×105 1.679 d β FP, IM
639 254mEs 99 155 7.74819 1.415×105 1.638 d β, α (0.3), ε (0.08)
640 69Ge 32 37 9.04379 1.406×105 1.627 d β+
641 133mBa 56 77 8.727447 1.400×105 1.621 d IT, ε
642 77As 33 44 9.03127 1.396×105 1.616 d β FP
643 119Sb 51 68 8.82322 1.375×105 1.591 d β+
644 147Gd 64 83 8.58395 1.370×105 1.586 d β+
645 194Au 79 115 8.23736 1.369×105 1.584 d β+
646 229Pa 91 138 7.94076 1.339×105 1.55 d β+, α (0.5)
647 246Cf 98 148 7.810789 1.285×105 1.49 d α, SF
648 57Ni 28 29 9.05525 1.282×105 1.483 d β+
649 105Rh 45 60 8.90800 1.272×105 1.473 d β FP
650 82Br 35 47 9.01642 1.270×105 1.470 d β
651 79Kr 36 43 9.01362 1.261×105 1.46 d β+
652 137mCe 58 79 8.696606 1.238×105 1.43 d IT (99), β+ (0.8)
653 169Lu 71 98 8.41500 1.226×105 1.419 d β+
654 143Ce 58 85 8.64199 1.189×105 1.377 d β FP
655 251Es 99 152 7.77446 1.188×105 1.38 d β+, α (0.5)
656 131mTe 52 79 8.720393 1.169×105 1.353 d β (74), IT (26) FP
657 83Sr 38 45 8.99660 1.167×105 1.350 d β+
658 129Cs 55 74 8.74960 1.154×105 1.336 d β+
659 232Pa 91 141 7.91637 1.140×105 1.32 d β
660 165Tm 69 96 8.45271 1.082×105 1.253 d β+
661 193Os 76 117 8.24435 1.074×105 1.243 d β
662 226Ac 89 137 7.96376 1.057×105 1.224 d β (83), β+ (17), α
663 160Er 68 92 8.4842 1.029×105 1.191 d β+
664 151Pm 61 90 8.55732 1.022×105 1.183 d β FP
665 135mBa 56 79 8.720077 1.012×105 1.171 d IT
666 121Sn 50 71 8.808480 9.731×104 1.126 d β FP
667 166Ho 67 99 8.451260 9.652×104 1.117 d β IM
668 76As 33 43 9.02252 9.446×104 1.093 d β
669 200Tl 81 119 8.20655 9.396×104 1.088 d β+
670 72As 33 39 9.01896 9.360×104 1.083 d β+
671 231Th 90 141 7.924929 9.187×104 1.063 d β DP
672 252Fm 100 152 7.76649 9.140×104 1.058 d α, SF
673 156m2Tb[d] 65 91 8.78×104 1.02 d IT
674 189Re 75 114 8.27227 8.748×104 1.01 d β


Radionuclides with half-lives of 1 hour to 1 day

Ordered by half-life.


No. Nuclide Z N Energy Half-life
(seconds)
Half-life
(hours)
Decay mode Notes
675 197mHg 80 117 8.22483 8.575×104 23.82 IT
676 187W 74 113 8.284708 8.571×104 23.81 β
677 248mBk[d] 97 151 7.79669 8.532×104 23.7 β (70), ε (30)
678 173Hf 72 101 8.3916 8.496×104 23.6 β+
679 96Nb 41 55 8.963014 8.406×104 23.35 β
680 154m2Tb[d] 65 89 8.17×104 22.7 β+
681 236mNp 93 143 7.88726 8.1×104 22.5 ε (50), β (50)
682 43K 19 24 8.921909 8.028×104 22.3 β
683 228Pa 91 137 7.94446 7.92×104 22 β+ (98), α (2)
684 182Os 76 106 8.3164 7.862×104 21.8 β+
685 48Cr 24 24 8.9634 7.762×104 21.56 β+
686 154m1Tb[d] 65 89 7.74×104 21.5 β+
687 200Pb 82 118 8.20257 7.740×104 21.5 β+
688 112Pd 46 66 8.84204 7.574×104 21.0 β FP
689 28Mg 12 16 8.607745 7.529×104 20.92 β CG
690 133I 53 80 8.71686 7.499×104 20.83 β FP
691 100Rh 45 55 8.9272 7.488×104 20.8 β+
692 122Xe 54 68 8.77095 7.236×104 20.1 β+
693 255Fm 100 155 7.74269 7.225×104 20.07 α, SF
694 181Re 75 106 8.32832 7.164×104 19.9 β+
695 197Pt 78 119 8.225733 7.161×104 19.89 β
696 194Ir 77 117 8.239008 6.966×104 19.35 β
697 95Tc 43 52 8.97680 6.933×104 19.26 β+
698 142Pr 59 83 8.66136 6.883×104 19.1 β, ε
699 135La 57 78 8.71312 6.808×104 18.91 β+
700 200mAu 79 121 8.2025 6.732×104 18.7 β (84), IT (16)
701 159Gd 64 95 8.502525 6.652×104 18.48 β FP
702 152Tb 65 87 8.5366 6.436×104 17.88[44] β+
703 135Ce 58 77 8.69810 6.372×104 17.7 β+
704 193Au 79 114 8.24440 6.354×104 17.7 β+
705 151Tb 65 86 8.54565 6.339×104 17.61 β+, α
706 55Co 27 28 9.053682 6.311×104 17.53 β+
707 188Re 75 113 8.278855 6.122×104 17.01 β IM
708 125Xe 54 71 8.76891 6.073×104 16.87 β+
709 97Zr 40 57 8.926336 6.030×104 16.75 β FP
710 186Ir 77 109 8.28192 5.990×104 16.64 β+
711 86Zr 40 46 8.97793 5.940×104 16.5 β+
712 76Br 35 41 8.9962 5.832×104 16.2 β+
713 119Te 52 67 8.80395 5.778×104 16.05 β+
714 242Am 95 147 7.842111 5.767×104 16.02 β (83), ε (17)
715 170Hf 72 98 8.4022 5.764×104 16.0 β+
716 268Db 105 163 5.76×104 16[n 1] α (51), SF (49) [45]
717 157Eu 63 94 8.51373 5.465×104 15.18 β FP
718 24Na 11 13 8.422064 5.384×104 14.96 β CG, IM
719 76Kr 36 40 8.97940 5.328×104 14.8 β+
720 86Y 39 47 8.9932 5.306×104 14.74 β+
721 90Nb 41 49 8.98978 5.256×104 14.60 β+
722 211Rn 86 125 8.11281 5.256×104 14.6 β+ (73), α (27)
723 185Ir 77 108 8.28192 5.184×104 14.4 β+
724 182mRe[d] 75 107 8.3207 5.090×104 14.1 β+
725 240U 92 148 7.85167 5.076×104 14.1 β
726 72Ga 31 41 9.02393 5.049×104 14.03 β
727 69mZn 30 39 9.05653 4.949×104 13.75 IT, β
728 109Pd 46 63 8.87505 4.892×104 13.6 β FP
729 87mY 39 48 9.02118 4.813×104 13.37 IT (98), β+ (1.6)
730 123I 53 70 8.78630 4.760×104 13.2 β+ IM
731 191mOs 76 115 8.261479 4.716×104 13.10 IT
732 183Os 76 107 8.3099 4.680×104 13.0 β+
733 150mEu 63 87 8.56965 4.608×104 12.8 β (89), β+(11)
734 64Cu 29 35 9.093574 4.572×104 12.70 β+ (62), β (38) IM
735 200Pt 78 122 8.2043 4.536×104 12.6 β
736 130I 53 77 8.74006 4.450×104 12.36 β
737 42K 19 23 8.905176 4.448×104 12.36 β IM
738 171Hf 72 99 8.3955 4.356×104 12.1 β+
739 239Am 95 144 7.864664 4.284×104 11.9 β+, α
740 193mHg 80 113 8.23153 4.248×104 11.8 β+ (93), IT (7.2)
741 203Bi 83 120 8.17735 4.234×104 11.76 β+
742 204Bi 83 121 8.17252 4.039×104 11.22 β+
743 77Ge 32 45 8.996161 4.036×104 11.21 β FP
744 266Lr 103 163 3.96×104 11[n 1] SF
745 189Pt 78 111 8.26428 3.913×104 10.9 β+
746 195Hg 80 115 8.2304 3.848×104 10.7 β+
747 212Pb 82 130 8.106926 3.826×104 10.63 β DP, IM
748 175Ta 73 102 8.3708 3.78×104 10.5 β+
749 187Ir 77 110 8.2828 3.78×104 10.5 β+
750 245Pu 94 151 7.81345 3.78×104 10.5 β
751 165Er 68 97 8.462357 3.730×104 10.36 β+
752 93Y 39 54 8.9770 3.665×104 10.18 β FP
753 244Am 95 149 7.825912 3.604×104 10.01 β
754 154Tb[d] 65 89 8.5269 3.598×104 9.99 β+
755 155Dy 66 89 8.51749 3.564×104 9.9 β+
756 183mOs 76 107 8.3090 3.564×104 9.9 β+ (85), IT(15)
757 91Sr 38 53 8.99057 3.474×104 9.65 β FP
758 196m2Au 79 117 8.22715 3.457×104 9.60 IT
759 156Sm 62 94 8.51594 3.384×104 9.4 β FP
760 127Te 52 75 8.76644 3.366×104 9.35 β FP
761 201Pb 82 119 8.19704 3.359×104 9.33 β+
762 152mEu 63 89 8.550548 3.352×104 9.31 β- (73), β+(27)
763 66Ga 31 35 9.03683 3.349×104 9.30 β+
764 62Zn 30 32 9.057900 3.309×104 9.19 β+
765 135Xe 54 81 8.71141 3.290×104 9.14 β FP
766 128Sb 51 77 8.7325 3.244×104 9.01 β FP
767 137Ce 58 79 8.698463 3.24×104 9.0 β+
768 58mCo 27 31 9.10274 3.187×104 8.85 IT, β+
769 234Pu 94 140 7.89888 3.168×104 8.8 β+ (94), α (6)
770 184Ta 73 111 8.3041 3.132×104 8.7 β
771 250Es[d] 99 151 3.096×104 8.6 β+
772 101Pd 46 55 8.91718 3.049×104 8.47 β+
773 52Fe 26 26 9.000782 2.979×104 8.28 β+
774 173Tm 69 104 8.39650 2.966×104 8.24 β
775 180Ta 73 107 8.34317 2.935×104 8.15 ε (85), β (15)
776 157Dy 66 91 8.51352 2.930×104 8.14 β+
777 210At 85 125 8.12833 2.916×104 8.1 β+, α (0.2)
778 176Ta 73 103 8.3632 2.912×104 8.09 β+
779 166Tm 69 97 8.44413 2.772×104 7.70 β+
780 256Es[d] 99 157 2.736×104 7.6 β
781 171Er 68 103 8.408849 2.706×104 7.52 β
782 199Tl 81 118 8.2123 2.671×104 7.42 β+
783 211At 85 126 8.12652 2.597×104 7.21 β+ (58), α (42) IM
784 73Se 34 39 9.00593 2.574×104 7.15 β+
785 93mMo 42 51 8.978653 2.466×104 6.85 IT, β+ (0.1)
786 234Pa 91 143 7.89893 2.412×104 6.70 β DP
787 135I 53 82 8.69190 2.369×104 6.58 β FP
788 107Cd 48 59 8.88431 2.340×104 6.50 β+
789 82mRb 37 45 8.99960 2.330×104 6.47 β+
790 153Dy 66 87 8.52323 2.304×104 6.4 β+, α
791 127Cs 55 72 8.75037 2.250×104 6.25 β+
792 228Ac 89 139 7.944587 2.214×104 6.15 β DP
793 99mTc 43 56 8.951977 2.162×104 6.01 IT, β FP, IM
794 145Pr 59 86 8.62046 2.154×104 5.98 β FP
795 189mOs 76 113 8.277435 2.092×104 5.81 IT
796 207Po 84 123 8.15415 2.088×104 5.80 β+, α
797 111mPd 46 65 8.844414 2.003×104 5.56 IT (77), β (23)
798 90Mo 42 48 8.96213 2.002×104 5.56 β+
799 180mHf 72 108 8.341529 1.991×104 5.53 IT, β (0.3)
800 257Md 101 156 7.725044 1.987×104 5.52 ε (85), α (15)
801 139mNd 60 79 8.6597 1.980×104 5.50 β+ (87), IT (13)
802 209At 85 124 8.13296 1.951×104 5.42 β+ (96), α (3.9)
803 113Ag 47 66 8.8415 1.933×104 5.37 β
804 156m1Tb 65 91 8.52006 1.908×104 5.3 IT
805 198Tl 81 117 8.21035 1.908×104 5.3 β+
806 251Fm 100 151 7.76869 1.908×104 5.30 β+ (98), α (1.8)
807 133mCe 58 75 8.6907 1.836×104 5.1 β+
808 138Nd 60 78 8.66564 1.814×104 5.04 β+
809 160mHo 67 93 8.48583 1.807×104 5.02 IT (73), β+ (27)
810 244Bk 97 147 7.82249 1.807×104 5.02 β+, α
811 118m2Sb 51 67 8.81493 1.800×104 5.00 β+
812 243Pu 94 149 7.83364 1.784×104 4.96 β
813 192Au 79 113 8.24201 1.778×104 4.94 β+
814 110In 49 61 8.8574 1.771×104 4.92 β+
815 94Tc 43 51 8.96662 1.758×104 4.88 β+
816 85mY 39 46 8.9869 1.750×104 4.86 β+
817 73Ga 31 42 9.02610 1.750×104 4.86 β
818 192Hg 80 112 8.23804 1.746×104 4.85 β+
819 99mRh 45 54 8.9352 1.69×104 4.7 β+
820 243Bk 97 146 7.82980 1.66×104 4.6 β+, α (0.15)
821 264Lr 103 161 1.66×104 4.6[n 1] SF[45]
822 132La 57 75 8.7056 1.652×104 4.59 β+
823 179Lu 71 108 8.34539 1.652×104 4.59 β
824 81Rb 37 44 9.00289 1.646×104 4.57 β+ IM
825 115mIn 49 66 8.846971 1.615×104 4.49 IT (95), β (5.0) FP
826 85mKr 36 49 9.02632 1.613×104 4.48 β (79), IT (21) FP
827 105Ru 44 61 8.88974 1.598×104 4.44 β FP
828 80mBr 35 45 9.01886 1.591×104 4.42 IT
829 139Pr 59 80 8.68160 1.588×104 4.41 β+
830 129Sb 51 78 8.7274 1.584×104 4.40 β FP
831 109In 49 60 8.86480 1.497×104 4.16 β+
832 110Sn 50 60 8.8517 1.495×104 4.15 β+
833 71mZn 30 41 9.01739 1.493×104 4.15 β
834 184Hf 72 112 8.2969 1.483×104 4.12 β
835 149Tb 65 84 8.55111 1.482×104 4.12 β+ (83), α (17)
836 44Sc 21 23 8.93077 1.455×104 4.04 β+
837 262Lr 103 159 1.44×104 4 β+, SF
838 141La 57 84 8.65947 1.411×104 3.92 β FP
839 133La 57 76 8.7141 1.408×104 3.91 β+
840 43Sc 21 22 8.91290 1.401×104 3.89 β+
841 193Hg 80 113 8.23226 1.368×104 3.80 β+
842 195mIr 77 118 8.23333 1.346×104 3.74 β
843 176mLu 71 105 8.373929 1.319×104 3.66 β, ε (0.1)
844 202mPb 82 120 8.18900 1.274×104 3.54 IT (90), β+ (9.5)
845 92Y 39 53 8.99323 1.274×104 3.54 β FP
846 204Po 84 120 8.16122 1.267×104 3.52 β+ (99), α (0.7)
847 132Ce 58 74 8.6961 1.264×104 3.51 β+
848 150Tb 65 85 8.54536 1.253×104 3.48 β+
849 117mCd 48 69 8.808771 1.239×104 3.44 β FP
850 61Cu 29 32 9.08745 1.203×104 3.34 β+
851 254Fm 100 154 7.752804 1.166×104 3.24 α, SF (0.06)
852 209Pb 82 127 8.155598 1.165×104 3.24 β DP
853 90mY 39 51 9.024817 1.161×104 3.23 IT, β
854 250Bk 97 153 7.77951 1.156×104 3.21 β
855 161Er 68 93 8.47629 1.156×104 3.21 β+
856 191Au 79 112 8.24827 1.145×104 3.18 β+
857 173Ta 73 100 8.3742 1.130×104 3.14 β+
858 112Ag 47 65 8.84439 1.127×104 3.13 β
859 247Cf 98 149 7.80367 1.120×104 3.11 β+, α
860 167Ho 67 100 8.44425 1.116×104 3.1 β
861 190mRe 75 115 8.25752 1.116×104 3.1 β (54), IT (46)
862 184Ir 77 107 8.2866 1.112×104 3.09 β+
863 190m3Ir 77 113 8.262777 1.111×104 3.09 β+ (91), IT (8.6)
864 45Ti 22 23 8.93821 1.109×104 3.08 β+
865 134mCs 55 79 8.718724 1.048×104 2.91 IT, ε (0.3)
866 197Tl 81 116 8.21525 1.022×104 2.84 β+
867 38S 16 22 8.7782 1.022×104 2.84 β
868 88Kr 36 52 8.97690 1.017×104 2.83 β FP
869 87mSr 38 49 9.042485 1.010×104 2.81 IT, ε (0.3)
870 117Sb 51 66 8.82892 1.008×104 2.80 β+
871 224Ac 89 135 7.98099 1.001×104 2.78 β+ (91), α (9.5)
872 93Tc 43 50 8.97031 9.90×103 2.75 β+
873 150Pm 61 89 8.5620 9.713×103 2.70 β
874 85Y 39 46 8.9871 9.648×103 2.68 β+
875 31Si 14 17 8.811610 9.430×103 2.62 β CG
876 256Fm 100 156 7.73739 9.426×103 2.62 SF (92), α (8.1)
877 92Sr 38 54 8.97205 9.400×103 2.61 β FP
878 56Mn 25 31 9.087598 9.284×103 2.58 β
879 65Ni 28 37 9.073254 9.063×103 2.52 β
880 117Cd 48 69 8.809937 9.011×103 2.50 β FP
881 176W 74 102 8.3591 9.00×103 2.5 β+
882 239Cm 96 143 9.00×103 2.5 β+, α
883 116Te 52 64 8.8064 8.964×103 2.49 β+
884 141Nd 60 81 8.66842 8.964×103 2.49 β+
885 161Ho 67 94 8.48869 8.928×103 2.48 β+
886 210Rn 86 124 8.11706 8.640×103 2.40 α (96), β+ (4)
887 198Pb 82 116 8.20297 8.640×103 2.4 β+
888 152Dy 66 86 8.53262 8.568×103 2.38 β+, α (0.1) IM
889 83Br 35 48 9.02329 8.546×103 2.37 β FP
890 178Ta[d] 73 105 8.496×103 2.36 β+
891 187Pt 78 109 8.2675 8.460×103 2.35 β+
892 165Dy 66 99 8.456847 8.395×103 2.33 β IM
893 132I 53 79 8.72059 8.262×103 2.30 β FP
894 158Er 68 90 8.4846 8.24×103 2.29 β+
895 195Ir 77 118 8.233843 8.24×103 2.29 β
896 66Ge 32 34 9.00476 8.136×103 2.26 β+
897 129Ba 56 73 8.73071 8.028×103 2.23 β+
898 250mEs[d] 99 151 7.99×103 2.22 β+
899 177W 74 103 8.3521 7.94×103 2.21 β+
900 238Cm 96 142 7.86357 7.92×103 2.2 β+ (96), α (3.8), SF
901 106mRh 45 61 8.88482 7.86×103 2.18 β
902 129mBa 56 73 8.73064 7.686×103 2.14 β+
903 138mPr 59 79 8.6712 7.632×103 2.12 β+
904 121I 53 68 8.78409 7.632×103 2.12 β+
905 127Sn 50 77 8.72856 7.560×103 2.10 β FP
906 123Xe 54 69 8.76439 7.488×103 2.08 β+
907 186Pt 78 108 8.2749 7.488×103 2.08 β+, α
908 245Am 95 150 7.818663 7.380×103 2.05 β
909 89Nb[d] 41 48 8.9772 7.308×103 2.03 β+
910 117mIn 49 68 8.82882 6.972×103 1.94 β (53), IT (47) FP
911 186mIr 77 109 8.28191 6.912×103 1.92 β+ (~75), IT (~25)
912 177Yb 70 107 8.359377 6.880×103 1.91 β
913 198mTl 81 117 8.20761 6.732×103 1.87 β+ (56), IT (44)
914 196Tl 81 115 8.21161 6.624×103 1.84 β+
915 83m2Kr 36 47 9.034560 6.588×103 1.83 IT FP
916 18F 9 9 8.02281 6.584×103 1.83 β+ CG, IM
917 41Ar 18 23 8.877842 6.577×103 1.83 β CG
918 163Tm 69 94 8.45615 6.516×103 1.81 β+
919 207At 85 122 8.13522 6.516×103 1.81 β+ (~90), α (~10)
920 239Pa 91 148 6.48×103 1.8 β
921 224Rn 86 138 7.97112 6.420×103 1.78 β
922 80Sr 38 42 8.95021 6.378×103 1.77 β+
923 181Os 76 105 8.3119 6.30×103 1.75 β+
924 205Po 84 121 8.15679 6.264×103 1.74 β+, α
925 149Nd 60 89 8.57048 6.221×103 1.73 β FP
926 202Bi 83 119 8.17405 6.19×103 1.72 β+
927 201Bi 83 118 8.17793 6.18×103 1.72 β+
928 249Es 99 150 6.132×103 1.70 β+ (99), α (0.6)
929 87Zr 40 47 8.98335 6.048×103 1.68 β+
930 126Ba 56 70 8.72743 6.00×103 1.67 β+
931 113mIn 49 64 8.858711 5.968×103 1.66 IT
932 61Co 27 34 9.10244 5.936×103 1.65 β
933 147Tb 65 82 8.55256 5.90×103 1.64 β+
934 238Am 95 143 7.8679 5.880×103 1.63 β+, α
935 208At 85 123 8.13127 5.868×103 1.63 β+ (99), α (0.6)
936 133Ce 58 75 8.6910 5.82×103 1.62 β+
937 75Br 35 40 8.99274 5.80×103 1.61 β+
938 95Ru 44 51 8.9498 5.785×103 1.61 β+
939 259Md 101 158 5.76×103 1.60 SF
940 152m5Eu 63 89 8.549875 5.748×103 1.60 IT
941 197mPt 78 119 8.223706 5.725×103 1.59 IT (97), β (3.3)
942 230Ra 88 142 7.92125 5.580×103 1.55 β
943 142La 57 85 8.63487 5.466×103 1.52 β FP
944 78As 33 45 9.0049 5.442×103 1.51 β FP
945 199Pb 82 117 8.19811 5.40×103 1.5 β+
946 78Ge 32 46 8.99263 5.28×103 1.47 β FP
947 255Cf 98 157 5.10×103 1.42 β
948 196mTl 81 115 8.20960 5.076×103 1.41 β+ (96), IT (3.8)
949 196mIr 77 119 8.2204 5.040×103 1.40 β
950 267Db 105 162 5.04×103 1.4[n 1] SF
951 132mI 53 79 8.71976 4.993×103 1.39 IT (86), β (14) FP
952 139Ba 56 83 8.682210 4.976×103 1.38 β FP
953 75Ge 32 43 9.029411 4.967×103 1.38 β
954 120I 53 67 8.7692 4.900×103 1.36 β+
955 256Md 101 155 4.662×103 1.30 β+ (91), α (9.2)
956 137Pr 59 78 8.67863 4.608×103 1.28 β+
957 87Kr 36 51 8.999014 4.578×103 1.27 β FP
958 164Yb 70 94 8.44334 4.548×103 1.26 β+
959 163Er 68 95 8.47112 4.500×103 1.25 β+
960 178Yb 70 108 8.35040 4.440×103 1.23 β
961 237Am 95 142 4.416×103 1.23 β+, α
962 77Kr 36 41 8.98261 4.368×103 1.21 β+
963 142Sm 62 80 8.62753 4.349×103 1.21 β+
964 97Nb 41 56 8.95382 4.326×103 1.20 β FP
965 185Pt 78 107 8.2696 4.254×103 1.18 β+
966 195Tl 81 114 8.21570 4.176×103 1.16 β+
967 129Te 52 77 8.745775 4.176×103 1.16 β FP
968 104Ag 47 57 8.88974 4.152×103 1.15 β+
969 110mIn 49 61 8.8568 4.146×103 1.15 β+
970 174Ta 73 101 8.3687 4.104×103 1.14 β+
971 68Ga 31 37 9.05788 4.071×103 1.13 β+ IM
972 85mSr 38 47 9.02267 4.058×103 1.13 IT (87), β+ (13)
973 190mIr 77 113 8.264621 4.032×103 1.12 IT
974 162mHo 67 95 8.47832 4.020×103 1.12 IT (62), β+ (38)
975 204m2Pb 82 122 8.183690 4.016×103 1.12 IT
976 89mNb[d] 41 48 3.96×103 1.10 β+
977 103Ag 47 56 8.89465 3.942×103 1.10 β+
978 249Cm 96 153 7.787179 3.849×103 1.07 β
979 229Ac 89 140 7.93730 3.762×103 1.05 β
980 117Te 52 65 8.7986 3.720×103 1.03 β+
981 240Np 93 147 7.85333 3.714×103 1.03 β
982 182mHf 72 110 8.31790 3.69×103 1.03 β (54), IT (46)
983 183Hf 72 111 8.3078 3.665×103 1.02 β
984 212Bi 83 129 8.109610 3.633×103 1.01 β (64), α (36) DP
985 116m2Sb 51 65 8.8165 3.618×103 1.01 β+
986 148Tb 65 83 8.54792 3.60×103 1.00 β+
987 270Db 105 165 3.6×103 1.0[n 1] α (~87), SF (~13)


  1. ^ a b c d e These superheavy isotopes have large statistical uncertainties in their half-lives because only a small number of atoms have been counted one at a time. They are given in their originally reported form with two significant figures, but would not deserve it by the standards applied to other isotopes. The actual uncertainty can be found through the isotope link.

Radionuclides with half-lives less than 1 hour

The following is incomplete and out of date, but is the only such list we have.

See also

Notes

  1. ^ Two further nuclides, plutonium-244 and samarium-146, have half-lives just long enough (8.13×107 and 9.20×107 years[1]) that they could have survived from the formation of the Solar System and be present on Earth in trace quantities (having survived 56 and 50 half-lives). They might therefore be considered primordial, but fall short of the detection threshold in studies so far.
  2. ^ Two isotopes marked as such, 134Cs and 154Eu, are not directly produced by fission but arise in nuclear reactors by neutron capture on isotopes that are. They are included as they are mentioned elsewhere on Wikipedia as being produced by fission.
  3. ^ a b c d e f Note that NUBASE2020 uses the tropical year to convert between years and other units of time, not the Gregorian year. The relationship between years and other time units in NUBASE2020 is as follows: 1 y = 365.2422 d = 31 556 926 s
  4. ^ a b c d e f g h i j k l m n o p q Uncertain whether this nuclide is the ground state of its isotope.

References

  1. ^ a b Chiera, Nadine M.; Sprung, Peter; Amelin, Yuri; Dressler, Rugard; Schumann, Dorothea; Talip, Zeynep (1 August 2024). "The 146Sm half-life re-measured: consolidating the chronometer for events in the early Solar System". Scientific Reports. 14 (1): 17436. doi:10.1038/s41598-024-64104-6. PMC 11294585. PMID 39090187.
  2. ^ Merrill, Paul W. (September 1954). "17. Technetium in S-type stars". Transactions of the International Astronomical Union. 8: 832–833.
  3. ^ Primarily sourced from [1] and [2]. (accessed 2025-07-18)
  4. ^ a b Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3) 030001. doi:10.1088/1674-1137/abddae.
  5. ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3) 030003. doi:10.1088/1674-1137/abddaf.
  6. ^ Yan, X.; Cheng, Z.; Abdukerim, A.; et al. (2024). "Searching for two-neutrino and neutrinoless double beta decay of 134Xe with the PandaX-4T experiment". Physical Review Letters. 132 (152502): 152502. arXiv:2312.15632. Bibcode:2024PhRvL.132o2502Y. doi:10.1103/PhysRevLett.132.152502. PMID 38682998.{{cite journal}}: CS1 maint: article number as page number (link)
  7. ^ Akerib, D S; et al. (2020-10-01). "Search for two neutrino double electron capture of 124Xe and 126Xe in the full exposure of the LUX detector". Journal of Physics G: Nuclear and Particle Physics. 47 (10): 105105. arXiv:1912.02742. Bibcode:2020JPhG...47j5105A. doi:10.1088/1361-6471/ab9c2d. ISSN 0954-3899.
  8. ^ Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Danevich, F. A.; d’Angelo, S.; Incicchitti, A.; Kovtun, G. P.; Kovtun, N. G.; Laubenstein, M.; Poda, D. V.; Polischuk, O. G.; Shcherban, A. P.; Solopikhin, D. A.; Suhonen, J.; Tretyak, V. I. (2013-03-06). "Search for 2 β decays of 96 Ru and 104 Ru by ultralow-background HPGe γ spectrometry at LNGS: Final results". Physical Review C. 87 (3): 034607. arXiv:1302.7134. doi:10.1103/PhysRevC.87.034607. ISSN 0556-2813.{{cite journal}}: CS1 maint: article number as page number (link)
  9. ^ Bikit, I.; Krmar, M.; Slivka, J.; Vesković, M.; Čonkić, Lj.; Aničin, I. (1998-10-01). "New results on the double β decay of iron". Physical Review C. 58 (4): 2566–2567. Bibcode:1998PhRvC..58.2566B. doi:10.1103/PhysRevC.58.2566. ISSN 0556-2813.
  10. ^ Beeman, J. W.; Bellini, F.; Cardani, L.; Casali, N.; Di Domizio, S.; Fiorini, E.; Gironi, L.; Nagorny, S. S.; Nisi, S.; Orio, F.; Pattavina, L.; Pessina, G.; Piperno, G.; Pirro, S.; Previtali, E.; Rusconi, C.; Tomei, C.; Vignati, M. (2013). "New experimental limits on the α decays of lead isotopes". The European Physical Journal A. 49 (4): 50. arXiv:1212.2422. Bibcode:2013EPJA...49...50B. doi:10.1140/epja/i2013-13050-7. ISSN 1434-6001.
  11. ^ Barabash, A. S.; Hubert, Ph.; Marquet, Ch.; Nachab, A.; Konovalov, S. I.; Perrot, F.; Piquemal, F.; Umatov, V. (2011-04-21). "Improved limits on β+ EC and ECEC processes in 112Sn". Physical Review C. 83 (4): 045503. doi:10.1103/PhysRevC.83.045503. ISSN 0556-2813.{{cite journal}}: CS1 maint: article number as page number (link)
  12. ^ Danevich, F. A.; Hult, M.; Junghans, A.; Kasperovych, D. V.; Kropivyansky, B. N.; Lutter, G.; Marissens, G.; Polischuk, O. G.; Romaniuk, M. V.; Stroh, H.; Tessalina, S.; Tretyak, V. I.; Ware, B. (2022). "New limits on double-beta decay of 190Pt and 198Pt". The European Physical Journal C. 82 (1). arXiv:2201.06555. doi:10.1140/epjc/s10052-022-09989-1. ISSN 1434-6044.
  13. ^ a b Belli, P; Bernabei, R; Cappella, F; Cerulli, R; Danevich, F A; d'Angelo, S; Incicchitti, A; Kobychev, V V; Poda, D V; Tretyak, V I (2011-11-01). "Final results of an experiment to search for 2β processes in zinc and tungsten with the help of radiopure ZnWO4 crystal scintillators". Journal of Physics G: Nuclear and Particle Physics. 38 (11): 115107. arXiv:1110.3923. Bibcode:2011JPhG...38k5107B. doi:10.1088/0954-3899/38/11/115107. ISSN 0954-3899.{{cite journal}}: CS1 maint: article number as page number (link)
  14. ^ Belli, P.; Bernabei, R.; Boiko, R. S.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F. A.; Di Marco, A.; Incicchitti, A.; Kropivyansky, B. N.; Laubenstein, M.; Nisi, S.; Poda, D. V.; Polischuk, O. G.; Tretyak, V. I. (2019). "First direct search for 2ϵ and ϵβ+ of 144Sm and 2β decay of 154Sm". The European Physical Journal A. 55 (11). arXiv:1910.02262. doi:10.1140/epja/i2019-12911-3. ISSN 1434-6001.
  15. ^ a b c d Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F. A.; Incicchitti, A.; Kasperovych, D. V.; Kobychev, V. V.; Kovtun, G. P.; Kovtun, N. G.; Laubenstein, M.; Poda, D. V.; Polischuk, O. G.; Shcherban, A. P.; Tessalina, S.; Tretyak, V. I. (2020-08-05). "Search for α decay of naturally occurring osmium nuclides accompanied by γ quanta". Physical Review C. 102 (2): 024605. arXiv:2009.01508. Bibcode:2020PhRvC.102b4605B. doi:10.1103/PhysRevC.102.024605. ISSN 2469-9985.{{cite journal}}: CS1 maint: article number as page number (link)
  16. ^ Lehnert, B; Wester, T; Degering, D; Sommer, D; Wagner, L; Zuber, K (2016-08-01). "Double electron capture searches in 74Se". Journal of Physics G: Nuclear and Particle Physics. 43 (8): 085201. arXiv:1605.05976. Bibcode:2016JPhG...43h5201L. doi:10.1088/0954-3899/43/8/085201. ISSN 0954-3899.{{cite journal}}: CS1 maint: article number as page number (link)
  17. ^ a b c d e Broerman, B.; Laubenstein, M.; Nagorny, S.; Song, N.; Vincent, A.C. (2021). "A search for rare and induced nuclear decays in hafnium". Nuclear Physics A. 1012: 122212. arXiv:2012.08339. Bibcode:2021NuPhA101222212B. doi:10.1016/j.nuclphysa.2021.122212.{{cite journal}}: CS1 maint: article number as page number (link)
  18. ^ a b c d e Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Danevich, F.A.; dʼAngelo, S.; Di Vacri, M.L.; Incicchitti, A.; Laubenstein, M.; Nagorny, S.S.; Nisi, S.; Tolmachev, A.V.; Tretyak, V.I.; Yavetskiy, R.P. (2011). "First search for double β decay of dysprosium". Nuclear Physics A. 859 (1): 126–139. arXiv:1103.5359. Bibcode:2011NuPhA.859..126B. doi:10.1016/j.nuclphysa.2011.04.003.
  19. ^ a b Belli, P.; Bernabei, R.; Boiko, R.S.; Cappella, F.; Cerulli, R.; Danevich, F.A.; Incicchitti, A.; Kropivyansky, B.N.; Laubenstein, M.; Poda, D.V.; Polischuk, O.G.; Tretyak, V.I. (2014). "Search for double beta decay of 136Ce and 138Ce with HPGe gamma detector". Nuclear Physics A. 930: 195–208. arXiv:1409.2734. Bibcode:2014NuPhA.930..195B. doi:10.1016/j.nuclphysa.2014.08.072.
  20. ^ Arnquist, I. J.; Avignone III, F. T.; Barabash, A. S.; Barton, C. J.; Bhimani, K. H.; Blalock, E.; Bos, B.; Busch, M.; Buuck, M.; Caldwell, T. S.; Christofferson, C. D.; Chu, P.-H.; Clark, M. L.; Cuesta, C.; Detwiler, J. A.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Haufe, C. R.; Henning, R.; Aguilar, D. Hervas; Hoppe, E. W.; Hostiuc, A.; Kim, I.; Kouzes, R. T.; Lannen V., T. E.; Li, A.; López-Castaño, J. M.; Massarczyk, R.; Meijer, S. J.; Meijer, W.; Oli, T. K.; Paudel, L. S.; Pettus, W.; Poon, A. W. P.; Radford, D. C.; Reine, A. L.; Rielage, K.; Rouyer, A.; Ruof, N. W.; Schaper, D. C.; Schleich, S. J.; Smith-Gandy, T. A.; Tedeschi, D.; Thompson, J. D.; Varner, R. L.; Vasilyev, S.; Watkins, S. L.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yu, C.-H. (13 October 2023). "Constraints on the Decay of 180mTa". Phys. Rev. Lett. 131 (15): 152501. arXiv:2306.01965. doi:10.1103/PhysRevLett.131.152501. PMID 37897780.{{cite journal}}: CS1 maint: article number as page number (link)
  21. ^ Belli, P.; Bernabei, R.; Dai, C.J.; Grianti, F.; He, H.L.; Ignesti, G.; Incicchitti, A.; Kuang, H.H.; Ma, J.M.; Montecchia, F.; Ponkratenko, O.A.; Prosperi, D.; Tretyak, V.I.; Zdesenko, Yu.G. (1999). "New limits on spin-dependent coupled WIMPs and on 2β processes in 40Ca and 46Ca by using low radioactive CaF2(Eu) crystal scintillators". Nuclear Physics B. 563 (1–2): 97–106. Bibcode:1999NuPhB.563...97B. doi:10.1016/S0550-3213(99)00618-5.
  22. ^ A. Alessandrello; et al. (January 2003). "New Limits on Naturally Occurring Electron Capture of 123Te". Physical Review C. 67 (1): 014323. arXiv:hep-ex/0211015. Bibcode:2003PhRvC..67a4323A. doi:10.1103/PhysRevC.67.014323. S2CID 119523039.{{cite journal}}: CS1 maint: article number as page number (link)
  23. ^ Aprile, E.; Abe, K.; Agostini, F.; et al. (26 August 2022). "Double-weak decays of Xe 124 and Xe 136 in the XENON1T and XENONnT experiments". Physical Review C. 106 (2). arXiv:2205.04158. doi:10.1103/PhysRevC.106.024328.
  24. ^ Meshik, A.P.; Hohenberg, C.M.; Pravdivtseva, O.V.; Kapusta, Y.S. (2001). "Weak decay of 130Ba and 132Ba: Geochemical measurements". Physical Review C. 64 (3): 035205–1–035205–6. Bibcode:2001PhRvC..64c5205M. doi:10.1103/PhysRevC.64.035205.
  25. ^ M. Pujol; B. Marty; P. Burnard; P. Philippot (2009). "Xenon in Archean barite: Weak decay of 130Ba, mass-dependent isotopic fractionation and implication for barite formation". Geochimica et Cosmochimica Acta. 73 (22): 6834–6846. Bibcode:2009GeCoA..73.6834P. doi:10.1016/j.gca.2009.08.002.
  26. ^ Münster, A.; Sivers, M. v.; Angloher, G.; Bento, A.; Bucci, C.; Canonica, L.; Erb, A.; Feilitzsch, F. v.; Gorla, P.; Gütlein, A.; Hauff, D.; Jochum, J.; Kraus, H.; Lanfranchi, J. -C.; Laubenstein, M.; Loebell, J.; Ortigoza, Y.; Petricca, F.; Potzel, W.; Pröbst, F.; Puimedon, J.; Reindl, F.; Roth, S.; Rottler, K.; Sailer, C.; Schäffner, K.; Schieck, J.; Scholl, S.; Schönert, S.; Seidel, W.; Stodolsky, L.; Strandhagen, C.; Strauss, R.; Tanzke, A.; Uffinger, M.; Ulrich, A.; Usherov, I.; Wawoczny, S.; Willers, M.; Wüstrich, M.; Zöller, A. (May 2014). "Radiopurity of CaWO4 crystals for direct dark matter search with CRESST and EURECA". Journal of Cosmology and Astroparticle Physics (5): 018. arXiv:1403.5114. Bibcode:2014JCAP...05..018M. doi:10.1088/1475-7516/2014/05/018. 018.
  27. ^ Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Incicchitti, A.; Laubenstein, M.; Leoncini, A.; Merlo, V.; Nagorny, S.S.; Nahorna, V.V.; Nisi, S.; Wang, P. (January 2025). "A new measurement of 174Hf alpha decay". Nuclear Physics A. 1053: 122976. doi:10.1016/j.nuclphysa.2024.122976.{{cite journal}}: CS1 maint: article number as page number (link)
  28. ^ Nozzoli, Francesco; Ghezzer, Luigi Ernesto; Nicolaidis, Riccardo; Iuppa, Roberto; Zuccon, Paolo; et al. (European Nuclear Physics Conference (EuNPC 2022)) (8 December 2023). "Investigation of Electron Capture in 176Lu with a LYSO crystal scintillator". EPJ Web of Conf. 290 (1002): 01002. arXiv:2211.15203. Bibcode:2023EPJWC.29001002N. doi:10.1051/epjconf/202329001002.
  29. ^ a b c d e f g h i j k l m n Davis, Andrew M. (2022). "Short-Lived Nuclides in the Early Solar System: Abundances, Origins, and Applications". Annual Review of Nuclear and Particle Science. 72: 339–363. Bibcode:2022ARNPS..72..339D. doi:10.1146/annurev-nucl-010722-074615.
  30. ^ Wallner, A.; Faestermann, T.; Feige, J.; Feldstein, C.; Knie, K.; Korschinek, G.; Kutschera, W.; Ofan, A.; Paul, M.; Quinto, F.; Rugel, G.; Steier, P. (2015). "Abundance of live 244Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis". Nature Communications. 6: 5956. arXiv:1509.08054. Bibcode:2015NatCo...6.5956W. doi:10.1038/ncomms6956. ISSN 2041-1723. PMC 4309418. PMID 25601158.
  31. ^ a b Clayton, Donald D.; Morgan, John A. (1977). "Muon production of 92,94Nb in the Earth's crust". Nature. 266 (5604): 712–713. doi:10.1038/266712a0. S2CID 4292459.
  32. ^ Cosmogenic Iron-60 In Iron Meteorites: Measurements By Low-Level Counting.
  33. ^ Interstellar 60Fe detected on Earth - but where is the r-process nuclide 244Pu?
  34. ^ Chiera, Nadine Mariel; Dressler, Rugard; Sprung, Peter; Talip, Zeynep; Schumann, Dorothea (2022-05-28). "High precision half-life measurement of the extinct radio-lanthanide Dysprosium-154". Scientific Reports. 12 (1). Springer Science and Business Media LLC: 8988. Bibcode:2022NatSR..12.8988C. doi:10.1038/s41598-022-12684-6. ISSN 2045-2322. PMC 9148308. PMID 35643721.
  35. ^ "Adopted Levels for 250Cm" (PDF). NNDC Chart of Nuclides.
  36. ^ Kajan, I.; Heinitz, S.; Kossert, K.; Sprung, P.; Dressler, R.; Schumann, D. (2021-10-05). "First direct determination of the 93Mo half-life". Scientific Reports. 11 (1): 19788. Bibcode:2021NatSR..1119788K. doi:10.1038/s41598-021-99253-5. ISSN 2045-2322. PMC 8492754. PMID 34611245.
  37. ^ Chiera, Nadine M.; Dressler, Rugard; Sprung, Peter; Talip, Zeynep; Schumann, Dorothea (2023). "Determination of the half-life of gadolinium-148". Applied Radiation and Isotopes. 194. Elsevier BV: 110708. Bibcode:2023AppRI.19410708C. doi:10.1016/j.apradiso.2023.110708. ISSN 0969-8043. PMID 36731388.{{cite journal}}: CS1 maint: article number as page number (link)
  38. ^ Janiak, Ł.; Gierlik, M.; R. Prokopowicz, G. Madejowski; Wronka, S.; Rzadkiewicz, J.; Carroll, J. J.; Chiara, C. J. (2022). "Half-life of the 188-keV isomer of 184Re". Physical Review C. 106 (44303): 044303. Bibcode:2022PhRvC.106d4303J. doi:10.1103/PhysRevC.106.044303. S2CID 252792730.{{cite journal}}: CS1 maint: article number as page number (link)
  39. ^ Kmak, K. N.; Neupane, S.; Kolos, K.; et al. (2025). "Measurement of the 175Hf half-life". Physical Review C. 111 (024308). doi:10.1103/PhysRevC.111.024308.
  40. ^ Liang, C. F.; Paris, P.; Sheline, R. K. (2000-09-19). "α decay of 225Ra". Physical Review C. 62 (4). American Physical Society (APS): 047303. Bibcode:2000PhRvC..62d7303L. doi:10.1103/physrevc.62.047303. ISSN 0556-2813.{{cite journal}}: CS1 maint: article number as page number (link)
  41. ^ Janiak, Ł.; Gierlik, M.; Kosinski, T.; Matusiak, M.; Madejowski, G.; Wronka, S.; Rzadkiewicz, J. (2024). "Half-life of 190Ir". Physical Review C. 110 (014306). doi:10.1103/PhysRevC.110.014306.
  42. ^ Norman, E. B.; Drobizhev, A.; Gharibyan, N.; Gregorich, K. E.; Kolomensky, Yu. G.; Sammis, B. N.; Scielzo, N. D.; Shusterman, J. A.; Thomas, K. J. (30 May 2024). "Half-life of Ge 71 and the gallium anomaly". Physical Review C. 109 (5). doi:10.1103/PhysRevC.109.055501.
  43. ^ Half-life determination of 155Tb from mass-separated samples produced at CERN-MEDICIS
  44. ^ Collins, S.M.; Köster, U.; Robinson, A.P.; Ivanov, P.; Cocolios, T.E.; Russell, B.; Fenwick, A.J.; Bernerd, C.; Stegemann, S.; Johnston, K.; Gerami, A.M.; Chrysalidis, K.; Mohamud, H.; Ramirez, N.; Bhaisare, A.; Mewburn-Crook, J.; Cullen, D.M.; Pietras, B.; Pells, S.; Dockx, K.; Stucki, N.; Regan, P.H. (2023). "Determination of the Terbium-152 half-life from mass-separated samples from CERN-ISOLDE and assessment of the radionuclide purity". Applied Radiation and Isotopes. 202. Elsevier BV: 111044. doi:10.1016/j.apradiso.2023.111044. ISSN 0969-8043. PMID 37797447.{{cite journal}}: CS1 maint: article number as page number (link)
  45. ^ a b "SHE Factory first experiment – FLEROV LABORATORY of NUCLEAR REACTIONS".