Eine bedingt konvergente Reihe ist ein Begriff aus der Mathematik, insbesondere aus der Analysis. Eine konvergente Reihe wird bedingt konvergent genannt, falls sie nicht unbedingt konvergiert.
Definition
Es sei eine Folge natürlicher Zahlen, in der jede Zahl genau einmal auftritt. (Also die Abbildung eine Bijektion von auf ist). Dann heißt die Reihe eine Umordnung der Reihe . Eine konvergente Reihe mit dem Grenzwert heißt unbedingt konvergent, wenn jede ihrer Umordnungen wieder konvergiert, und zwar gegen den gleichen Wert .
Eine konvergente Reihe heißt hingegen bedingt konvergent, falls sie nicht unbedingt konvergent ist.
Beispiel
Beispielsweise die alternierende harmonische Reihe
und die Leibniz-Reihe
konvergieren bedingt.
Eigenschaften
- Aus dem Dirichletschen Umordnungssatz, der besagt, dass eine absolut konvergente Reihe auch unbedingt konvergent ist, folgt, dass eine bedingt konvergente Reihe nicht absolut konvergiert. Im Endlichdimensionalen fallen die Begriffe der absoluten Konvergenz und der unbedingten Konvergenz von Reihen zusammen. Im endlichdimensionalen Fall ist also eine konvergente Reihe genau dann bedingt konvergent, wenn sie nicht absolut konvergent ist.
- Nach dem Riemannschen Umordnungssatz kann eine bedingt konvergente Reihe für jedes so umgeordnet werden, dass die umgeordnete Reihe gegen konvergiert.
Einzelnachweise
- 1 2 Harro Heuser: Lehrbuch der Analysis Teil 1. Mit 810 Aufgaben, zum Teil mit Lösungen. 14., durchges. Auflage. Wiesbaden 2001, ISBN 978-3-519-52233-1, S. 197.
- ↑ J. A. Fridy: Introductory Analysis: The Theory of Calculus. Gulf Professional Publishing, 2000, ISBN 978-0-12-267655-0, S. 155 (google.de [abgerufen am 6. November 2022]).
- ↑ Erste Hilfe in Analysis | 4.8 Absolute und bedingte Konvergenz – Oliver Deiser | aleph1. Abgerufen am 6. November 2022.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.