Als Dimroth-Umlagerung wird eine Umlagerungsreaktion von exo- und endo-cyclischen Heteroatomen in heterocyclischen Ringen bezeichnet. Der Begriff wurde in den 1960er Jahren zu einer Namensreaktion der organischen Chemie. Exo- und endo-cyclische Heteroatome (zumeist Stickstoffatome) wechseln hierbei ihre Position. Die Reaktion wurde zum ersten Mal im Jahr 1909 von dem deutschen Chemiker Otto Dimroth (1872–1940) beobachtet und publiziert.

Auch 1H-1,2,3-Triazole können die Dimroth-Umlagerung eingehen. Meist läuft die Reaktion bei sechsgliedrigen Ringen ab, jedoch ist sie auch an fünfgliedrigen Ringen durchführbar.

Mechanismus

Unter basischen Bedingungen reagiert ein Pyrimidinderivat zu einem umgelagerten Pyrimidinderivat. Im folgenden Beispiel hat dabei ein Stickstoffatom (genauer: NR) aus dem Ring die Position mit dem Stickstoffatom der Imingruppe gewechselt:

Das Hydroxidionen greift am Kohlenstoffatom in Position 6 des Pyrimidin-Derivats 1 an. Dabei bildet sich das Anion 2 welches zum Enol-Intermediat 3 umlagert. Durch einen [1,7]-Protonentransfer entsteht das Alkoholat 4, welches durch Elektronenumlagerung eine Carbonylgruppe ausbildet. Über eine Zwischenstufe bildet sich dann das Imidamid-Intermediat 5. Aus 5 kann sich durch erneute Elektronenpaarumlagerung dann das Amidion 6 bilden, das nun mit dem negativ geladenen Stickstoffatom einen nucleophilen Angriff auf das Kohlenstoffatom der Carbonylgruppe durchführt, wodurch sich das heterocyclische Alkoholat-Intermediat 7 bildet. Das Alkoholat 7 wird durch Wasser zum Alkohol 8 protoniert. Durch Wasserabspaltung entsteht schließlich das Pyrimidin-Derivat 9.

Beispiele

Mit Hilfe eines Beispiels soll hier nun die breite Anwendbarkeit der Dimroth-Umlagerung verdeutlicht werden.

Durch die Dimroth-Umlagerung können auch komplexere Reste ihre Position im Molekül verändern. Exemplarisch soll dies hier anhand eines Pyrimidin-Derivates gezeigt werden, an welchem ein chlorierter Phenylrest umgelagert wird:

Auch 1,2,3-Triazole können, wie bereits weiter oben erwähnt eine Dimroth-Umlagerung eingehen. Dies ist im folgenden Beispiel dargestellt. Ar bezeichnet hierbei einen Arylrest:

Die Triazole müssen eine Amino-Gruppe in der 5-Position tragen. Nach der Ringöffnung zu einer Diazo-Zwischenstufe und einer C-N-Bindungsdrehung wird ein umgelagertes Triazol erhalten.

Einzelnachweise

  1. Otto Dimroth: Ueber intramolekulare Umlagerungen. Umlagerungen in der Reihe des 1, 2, 3-Triazols. In: Justus Liebigs Annalen der Chemie. 364, Nr. 2, 1909, S. 183–226, doi:10.1002/jlac.19093640204.
  2. Otto Dimroth, Walter Michaelis: Intramolekulare Umlagerung der 5-Amino-1,2,3-triazole. In: Justus Liebigs Annalen der Chemie. 459, Nr. 1, 1927, S. 39–46, doi:10.1002/jlac.19274590104.
  3. Otto Dimroth: Ueber eine Synthese von Derivaten des 1.2.3-Triazols. In: Berichte der deutschen chemischen Gesellschaft. 35, Nr. 1, 1902, S. 1029–1038, doi:10.1002/cber.190203501171.
  4. 1 2 Z. Wang: Comprehensive Organic Name Reactions and Reagents, 3 Volume Set. Volume 1, John Wiley & Sons, Hoboken, New Jersey 2009, ISBN 978-0-471-70450-8, S. 906.
  5. Z. Wang: Comprehensive Organic Name Reactions and Reagents, 3 Volume Set. Volume 1, John Wiley & Sons, Hoboken, New Jersey 2009, ISBN 978-0-471-70450-8, S. 905.
  6. Reto W. Fischer and Marian Misun: Large-Scale Synthesis of a Pyrrolo[2,3-d]pyrimidine via Dakin–West Reaction and Dimroth Rearrangement. In: Organic Process Research & Development. Band 5, Nr. 6, 2001, S. 581586, doi:10.1021/op010041v.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.