Die gaußsche isoperimetrische Ungleichung ist in der Stochastik die isoperimetrische Ungleichung für den euklidischen Raum ausgestattet mit dem gaußschen Maß. Die Ungleichung sagt, dass unter allen Borel-Mengen im euklidischen Raum, die Halbräume das minimale gaußsche Oberflächenmaß besitzen.

Sie wurde von 1975 () von Christer Borell und unabhängig davon 1974 () von Wladimir Sudakow und Boris Tsirelson bewiesen.

Aussage

Sei

  • ein gaußscher Raum, der zusätzlich mit der euklidischen Metrik ausgestattet ist, wobei das kanonische -dimensionale gaußsche Maß ist.
  • die Verteilungsfunktion der Standard-Normalverteilung,
  • ein Halbraum, der mit demselben gaußschen Maß ausgestattet ist,
  • eine Borel-Menge in ,
  • die kleinste Distanz zwischen und .
  • ist die geschlossene euklidische Nachbarschaft der Menge mit Radius . Analog die gleiche Definition für . Beachte, ist ein weiterer Halbraum.

Sei nun . Dann gilt für alle , dass das kleinste gaußsche Maß besitzt, das bedeutet

Als Konsequenz folgt daraus

Außerdem, falls gilt, dann ist zusätzlich

Verallgemeinerungen

Es existieren verschiedene Verallgemeinerungen, darunter die Bobkow-Ungleichung und die Ehrhard-Ungleichung.

Einzelnachweise

  1. Christer Borell: The Brunn-Minkowski Inequality in Gauss Space. In: Inventiones Mathematicae. Band 30, Nr. 2, 1975, S. 207–216, doi:10.1007/BF01425510 (eudml.org).
  2. Wladimir N. Sudakow und Boris Tsirelson: Extremal properties of half-spaces for spherically invariant measures. In: Journal of Soviet Mathematics. Band 9, 1978, S. 9–18, doi:10.1007/BF01086099.
  3. M. Ledoux und M. Talagrand: Probability in Banach Spaces. In: Springer (Hrsg.): Ergebnisse der Mathematik und ihrer Grenzgebiete. Band 23. Berlin, Heidelberg 1991, S. 17, doi:10.1007/978-3-642-20212-4_11.

Literatur

  • D. W. Stroock: Gaussian Measures in Finite and Infinite Dimensions. Hrsg.: Springer International Publishing. Deutschland 2023.
  • M. Ledoux und M. Talagrand: Probability in Banach Spaces. In: Springer (Hrsg.): Ergebnisse der Mathematik und ihrer Grenzgebiete. Band 23. Berlin, Heidelberg 1991, S. 17, doi:10.1007/978-3-642-20212-4_11.
  • Michail Anatoljewitsch Lifschitz: Lectures on Gaussian Processes. Hrsg.: Springer Berlin Heidelberg. Deutschland 2012.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.