Die Hall-Konstante , die auch Hall-Koeffizient genannt wird, ist eine (temperaturabhängige) Materialkonstante, die in Kubikmeter pro Coulomb angegeben wird. Bei der Messung des Hall-Effekts bestimmt sie als Proportionalitätsfaktor die Hall-Spannung gemäß

wenn die untersuchte Schicht die Dicke  hat. Die Hall-Konstante ist durch

gegeben. Wenn die Hall-Konstante aus dem Strom  und der Hall-Spannung berechnet wird, ist die Schichtdicke  zu berücksichtigen, was nicht notwendig ist, wenn hierfür die Elektrische Stromdichte  und die elektrische Feldstärke  herangezogen werden. Die Indizes geben dabei die Orientierungen der jeweiligen Größen in einem kartesischen Koordinatensystem an. Der Wert der Hall-Konstanten gibt an, wie stark das elektrische Feld sein muss, um die Auswirkungen des Magnetfeldes auf die bewegten Ladungsträger zu kompensieren. Für die Hall-Konstante ist auch das Symbol gebräuchlich, das jedoch die Gefahr einer Verwechslung mit dem Hall-Widerstand in sich birgt.

Hallkonstante für freie Ladungsträger

Wenn die elektrische Leitfähigkeit eines Materials von nur einer Ladungsträgerart bestimmt wird, wie in vielen Metallen und stark dotierten Halbleitern, so kann die Hallkonstante aus dem Kehrwert des Produktes der Ladungsträgerdichte und der Ladung eines Ladungsträgers berechnet werden.

Aus dem Vorzeichen der Hallkonstanten kann die Art der Ladungsträger bestimmt werden. Im Falle von Metallen sind dies (eine negative Elementarladung tragende) Elektronen. Bei Halbleitern kommen je nach Dotierung sowohl positive (überwiegend Löcherleitung) als auch negative (überwiegend Elektronenleitung) Werte für die Hallkonstante vor.

Da die Art der Ladungsträger für einen Stoff üblicherweise bekannt ist, wird die Messung der Hallkonstanten vornehmlich zur Bestimmung der Ladungsträgerdichte benutzt. Diese ist häufig temperaturabhängig (bei Halbleitern sehr stark), womit sich auch die Hallkonstante mit der Temperatur ändert.

Tragen zur elektrischen Leitfähigkeit zwei verschiedene Arten von Ladungsträger bei, so wird die Formel ein wenig komplizierter. Dieses ist in Halbleitern der Fall, hier kommen neben Elektronen auch positiv geladene Löcher vor. Die Hallkonstante berechnet sich in diesem Fall wie folgt

Dabei steht der Index für Löcher bzw. für Elektronen und für die jeweilige Beweglichkeit. Zu Beachten ist, dass auch bei intrinsischen (nicht dotierten) Halbleitern die Hallkonstante aufgrund unterschiedlicher Beweglichkeiten von Null verschieden sein kann.

Hallkonstante für quasi-freie Elektronen

Auch Metalle können eine positive Hallkonstante haben, wie z. B. Aluminium, obwohl hier nur Elektronen zur Leitfähigkeit beitragen. Dieser Effekt kann nicht mit der Annahme frei beweglicher Ladungsträger im Metall vereinbart werden. Hier spielen Einschränkungen durch die Bandstruktur für erlaubte Elektronenbahnen die entscheidende Rolle. Unter gewissen Voraussetzungen können sich Leitungselektronen „lochartig“ verhalten, d. h., sie reagieren auf ein Magnetfeld, als hätten sie eine positive Ladung.

Geschichte

Edwin Hall hat in seinem Brief an das American Journal of Mathematics am 19. Nov. 1879 davon berichtet, dass der Quotient konstant ist. Die Konstante selbst, die später nach ihm benannt wurde, konnte er nicht vorhersagen, da zu seiner Zeit das Elektron und die Elementarladung  noch unbekannt waren.

Einige typische Werte

Typische Werte der Hall-Konstante verschiedener, exemplarisch aufgelisteter Materialien:

MaterialHall-Konstante
(10−12 m3/C)
Typ
Beryllium+243Löcher
(anormal)
Indium+160
Aluminium+99
Zink+64
Platin−20Elektronen
(normal)
Kupfer−53
Gold−70
Silber−89
Lithium−170
Calcium−178
Natrium−248
Kalium−420
Rubidium−500
Bismut−500.000
Indiumantimonid (Halbleiter)−240.000.000

Die angegebenen Werte der Hallkonstante streuen stark. Dies hängt einerseits von der Reinheit des Materials und andererseits von der Temperatur ab. Für Aluminium wird beispielsweise auch der Wert −34·10−12 m3C in Veröffentlichungen angegeben. Besitzt die Hallkonstante einen positiven Wert, dominiert Löcherleitung, bei einem negativen Wert Elektronenleitung.

Umrechnung von cgs-Einheiten nach SI-Einheiten
1 cm−3/2·g1/2·s−1 = 8,8541878128·1013 m3C

Literatur

  • Gerthsen, Vogel: Physik. 17. Auflage. Springer, 1993
  • Charles Kittel: Einführung in die Festkörperphysik. 12. Auflage. Oldenbourg, 1999, ISBN 3-486-23843-4
  • Harald Ibach, Hans Lüth: Festkörperphysik. 6. Auflage. Springer, 2002, ISBN 3-540-42738-4

Einzelnachweise

  1. https://iopscience.iop.org/book/978-1-64327-690-8/chapter/bk978-1-64327-690-8ch1
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.