Die Omega-Konstante ist eine mathematische Konstante, die implizit durch

mit der Eulerschen Zahl definiert ist. Es gilt

wobei die Lambertsche W-Funktion ist. Die Bezeichnung kommt von Omegafunktion, dem zweiten Namen der Lambertschen W-Funktion.

Die ersten Dezimalstellen von lauten

Eigenschaften

  • bzw. , d. h. an der Stelle schneiden sich die Exponentialfunktion und die Funktion
  • Wenn man einen Potenzturm, der mit beginnt und mit nach oben geht, anlegt, bekommt man :
  • In etwas anderen Worten bedeutet dies, dass der Grenzwert der durch
mit beliebigem Startwert rekursiv definierten Folge ist.
  • Durch
kommt in der sog. Pfeilschreibweise die Beziehung
zum Ausdruck, dass also der Wert dieses unendlichen Potenzturmes mit lauter gleichen Basen ist, was wiederum nur eine ziemlich triviale Umformulierung der beiden vorstehenden Eigenschaften darstellt.
  • wobei mittels der Realteil des Integrals gebildet wird.
  • ist eine transzendente Zahl.
Wäre nämlich eine algebraische Zahl, würde nach dem Satz von Lindemann-Weierstraß transzendent. Das widerspricht aber , sodass eine transzendente Zahl sein muss.

Einzelnachweise

  1. Folge A030178 in OEIS
  2. Folge A115287 in OEIS
  3. István Mező: An integral representation for the principal branch of Lambert the W function. Abgerufen am 19. November 2018.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.