Oxyplumboroméit
Pseudomorphose von Oxyplumboroméit nach Bournonit aus der Sierra Minera de Cartagena-La Unión, La Unión, Murcia, Spanien (Sichtfeld: 1 mm)
Allgemeines und Klassifikation
IMA-Nummer

2013-042

IMA-Symbol

Opr

Andere Namen
  • Monimolit
  • Bindheimit (z. T.)
Chemische Formel
  • Pb2Sb2O7
  • Pb2Sb2O6O
Mineralklasse
(und ggf. Abteilung)
Oxide und Hydroxide
System-Nummer nach
Strunz (8. Aufl.)
Lapis-Systematik
(nach Strunz und Weiß)
Strunz (9. Aufl.)
Dana

IV/C.13 (Monimolit)
IV/C.16-074

4.DH.15
44.01.01.05 (Monimolit)
Kristallographische Daten
Kristallsystem kubisch
Kristallklasse; Symbol hexakisoktaedrisch; 4/m32/m
Raumgruppe Fd3m (Nr. 227)Vorlage:Raumgruppe/227
Gitterparameter a = 10,3783 Å
Formeleinheiten Z = 8
Häufige Kristallflächen {111}
Physikalische Eigenschaften
Mohshärte  5
Dichte (g/cm3) 6,732 (berechnet)
Spaltbarkeit undeutlich nach {111} (Monimolit)
Bruch; Tenazität uneben; spröde
Farbe gelb bis bräunlichgelb
Strichfarbe strohgelb
Transparenz durchscheinend bis fast undurchsichtig (Monimolit)
Glanz Fett- bis Metallglanz (Monimolit)
Kristalloptik
Brechungsindex n = 2,061
Optischer Charakter isotrop
Weitere Eigenschaften
Chemisches Verhalten Monimolit ist weder in den stärksten Säuren noch in gelösten oder schmelzenden kaustischen und kohlensauren Alkalien löslich

Oxyplumboroméit ist ein seltenes Mineral aus der Mineralklasse der Oxide und Hydroxide. Es kristallisiert im kubischen Kristallsystem mit der Zusammensetzung Pb2Sb2O6O, ist also ein Blei-Antimonat, dessen Y-Position hauptsächlich durch Sauerstoffionen besetzt ist.

Oxyplumboroméit kommt an seiner Typlokalität in Form von subidiomorphen, oktaedrischen Kristallen von < 0,4 mm Größe vor, die zu maximal 2 mm großen Aggregaten zusammentreten und eng mit weißem Calcit und rosafarbenem Leukophönicit vergesellschaftet sind.

Die Typlokalität des Oxyplumboroméits ist ein Tephroit-Skarn im Eisen-Mangan-Bergwerk „Harstigen“ („Harstigsgruvan“) (Koordinaten des Bergwerks Harstigen) bei Pajsberg in der Gemeinde Filipstad, Provinz Värmlands län bzw. der historischen Provinz Värmland im zentralen Schweden.

Etymologie und Geschichte

Im Jahre 1865 wurde vom schwedischen Mineralogen Lars Johan Igelström (1822–1897) auf den Eisen-/Mangangruben von Harstigen bei Pajsberg, Schweden, ein Mineral entdeckt, welches er aufgrund seiner Widerstandsfähigkeit gegenüber chemischen Einflüssen nach dem griechischen Wort μόυĭμος [monimos] für „beständig“ Monimolit nannte. Brian Mason und Charles J. Vitaliano zufolge handelte es sich bei diesem Monimolit um ein Blei-Antimonat mit geringfügiger Substitution von Blei durch andere Elemente. Sein Pulverdiagramm ist praktisch identisch mit dem des Bindheimits, wobei die einzelnen Linien aufgrund der perfekten Kristallinität besser definiert sind. Das Typmaterial für Monimolit wird in der Sammlung des Schwedischen Naturhistorischen Reichsmuseums aufbewahrt. Gustaf Flink und Adolf Erik Nordenskiöld haben weitere Monimolit-Stufen von der Typlokalität sowie anderen Fundorten (Långban, Schweden) untersucht.

Im Jahre 2010 wurde seitens der IMA eine neue Nomenklatur für die Minerale der neu definierten Pyrochlor-Obergruppe (Pyrochlor-Supergruppe) vorgelegt. Darin wurde festgelegt, dass das Pb-Sb-O-dominante Glied dieser Obergruppe als Oxyplumboroméit zu bezeichnen ist. Ferner wurde konstatiert, dass die „problematische“ Spezies Monimolit nahezu sicher identisch mit Oxyplumboroméit ist, was aber noch zu überprüfen war. Daniel Atencio und Kollegen sowie Christy und Atencio führten ferner aus, dass eine einfache Gleichsetzung von Monimolit (sowie Bindheimit) mit Oxyplumboroméit nicht möglich ist, da zu diesem Zeitpunkt eine Entscheidung darüber, ob es sich bei der Monimolit-Typstufe tatsächlich um Oxyplumboroméit handelt und ob das auf alle Monimolit-Stufen zutrifft, nicht möglich war.

Wenig später wurden die physikalischen, chemischen und strukturellen Eigenschaften von drei aus der Sammlung von Igelström stammenden, sich heute in der Sammlung des Naturhistorischen Reichsmuseums in Stockholm befindenden Monimolit-Stufen aus Harstigen mittels einer Kombination aus Mikrosondenanalysen, Röntgendiffraktometrie (Einkristall- und Pulverdiffraktion), FTIR-Spektroskopie und Mößbauerspektroskopie untersucht. Eine dieser Stufen, die mit dem von Igelström beschriebenen Monimolit am besten übereinstimmte, erwies sich als identisch mit Oxyplumboroméit im Sinne der neuen Nomenklatur der Pyrochlor-Obergruppe. Das neue Mineral wurde der International Mineralogical Association (IMA) vorgelegt, die es im Jahre 2013 unter der vorläufigen Bezeichnung IMA 2013-042 anerkannte. Die wissenschaftliche Erstbeschreibung dieses Minerals erfolgte im Jahre 2013 durch ein schwedisch-italienisches Forscherteam mit Ulf Hålenius und Ferdinando Bosi im englischen Wissenschaftsmagazin Mineralogical Magazine. Die Autoren benannten das Mineral in Übereinstimmung mit der Nomenklatur der Pyrochlor-Obergruppe aufgrund seiner chemischen Zusammensetzung mit einer durch Blei dominierten A-Position, durch Sb dominierten B-Position sowie durch O dominierten Y-Position als Oxyplumboroméit (englisch Oxyplumboroméite). Konsequenterweise sollte der Name Monimolit durch die IMA diskreditiert werden.

Das Typmaterial für Oxyplumboroméit wird unter der Katalognummer g22779 in der Sammlung des Naturhistorischen Reichsmuseums in Stockholm, Schweden, aufbewahrt.

Roméit war ein 1841 durch Augustin Alexis Damour zu Ehren von Jean-Baptiste Romé de L’Isle, französischer Mineraloge und einer der Begründer der Kristallographie, benanntes Mineral, welches bei der Neudefinition der Nomenklatur der Pyrochlor-Obergruppe im Jahre 2010 diskreditiert wurde, da sich hinter seiner Zusammensetzung die neuen Minerale Fluornatroroméit, Fluorcalcioroméit und Oxycalcioroméit verbergen. Er ist gleichzeitig der Namensgeber für die Roméit-Untergruppe innerhalb der Pyrochlor-Obergruppe.

Klassifikation

Die aktuelle Klassifikation der International Mineralogical Association (IMA) zählt den Oxyplumboroméit zur Pyrochlor-Obergruppe mit der allgemeinen Formel A2–mB2X6–wY1–n, in der A, B, X und Y unterschiedliche Positionen in der Struktur der Minerale der Pyrochlor-Obergruppe mit A = Na, Ca, Sr, Pb2+, Sn2+, Sb3+, Y, U, □, oder H2O; B = Ta5+, Nb5+, Ti4+, Sb5+, W6+, Al3+ oder Mg2+; X = O, OH oder F und Y = OH, F, O, □, H2O oder sehr große (>> 1,0 Å) einwertige Kationen wie K, Cs oder Rb repräsentieren. Zur Pyrochlor-Obergruppe gehören neben Oxyplumboroméit noch Fluorcalciomikrolith, Fluornatromikrolith, Hydrokenomikrolith, Hydroxycalciomikrolith, Hydroxykenomikrolith, Kenoplumbomikrolith, Oxynatromikrolith, Oxystannomikrolith, Oxystibiomikrolith, Cesiokenopyrochlor, Fluorcalciopyrochlor, Fluornatropyrochlor, Hydrokenopyrochlor, Hydropyrochlor, Hydroxycalciopyrochlor, Hydroxykenopyrochlor, Hydroxymanganopyrochlor, Hydroxynatropyrochlor, Oxycalciopyrochlor, Fluorcalcioroméit, Hydroxycalcioroméit, Hydroxyferroroméit, Oxycalcioroméit, Hydrokenoelsmoreit, Hydroxykenoelsmoreit, Fluornatrocoulsellit und Hydrokenoralstonit. Oxyplumboroméit bildet zusammen mit Fluorcalcioroméit, Hydroxycalcioroméit, Hydroxyferroroméit und Oxycalcioroméit innerhalb der Pyrochlor-Obergruppe die Roméitgruppe.

Die mittlerweile veraltete, aber teilweise noch gebräuchliche 8. Auflage der Mineralsystematik nach Strunz führt den Oxyplumboroméit noch nicht auf, ordnet den Monimolit aber in die Mineralklasse der „Oxide und Hydroxide“ und dort zur allgemeinen Abteilung der „Oxide mit Verhältnis Metall : Sauerstoff = 2 : 3 (M2O3 und verwandte Verbindungen)“ ein, wo er zusammen mit Jixianit die unbenannte Gruppe mit der System-Nr. IV/C.13 bildete.

Die seit 2001 gültige und von der International Mineralogical Association (IMA) verwendete 9. Auflage der Strunz’schen Mineralsystematik ordnet den Oxyplumboroméit ebenso wie den hier als fraglich (questionable, Q) gekennzeichneten Monimolit in die Abteilung der „Oxide mit dem Stoffmengenverhältnis Metall : Sauerstoff = 1 : 2 und vergleichbare“ ein. Diese ist weiter unterteilt nach der relativen Größe der beteiligten Kationen und der Kristallstruktur, so dass das Mineral entsprechend seiner Zusammensetzung und seinem Aufbau in der Unterabteilung „Mit großen (± mittelgroßen) Kationen; Lagen kantenverknüpfter Oktaeder“ zu finden ist, wo es zusammen mit allen Vertretern der Pyrochlor-, Mikrolith-, Betafit-, Roméit- und Elsmoreitgruppen die Pyrochlor-Übergruppe mit der System-Nr. 4.DH.15 bildet. Oxyplumboroméit ist dabei zusammen mit Fluorcalcioroméit, Fluornatroroméit, Hydroxycalcioroméit (ehemals Lewisit), Oxycalcioroméit, Bismutostibiconit (Q), Monimolit (Q), Partzit (Q), Stetefeldtit (Q), Stibiconit (Q) in der Roméitgruppe zu finden.

Auch die vorwiegend im englischen Sprachraum gebräuchliche Systematik der Minerale nach Dana kennt den Oxyplumboroméit noch nicht, ordnet den Monimolit dagegen in die Klasse der „Phosphate, Arsenate und Vanadate“ und dort in die Abteilung der „Antimonate“ ein. Hier ist er zusammen mit Stibiconit, Bindheimit, Roméit, Lewisit, Stetefeldit, Bismutostibiconit und Partzit in der Stibiconit-Gruppe mit der System-Nr. 44.01.01 innerhalb der Unterabteilung „Antimonate A(X2O6)“ zu finden.

Chemismus

Acht Mikrosondenanalysen an Oxyplumboroméit-Körnern von der Typlokalität lieferten Mittelwerte von 48,69 % Sb2O3; 0,00 % SiO2; 0,01 % Al2O3; 3,85 % Fe2O3; 8,46 % CaO; 1,06 % MnO; 0,23 % SrO; 0,01 % BaO; 35,82 % PbO; 0,24 % Na2O; 0,07 % SO3 und 0,05 % H2O (berechnet); Summe = 98,49 %. Auf der Basis von zwei Kationen auf der B-Position pro Formeleinheit wurde daraus die empirische Formel A(Pb0,92Ca0,87Mn0,09Sr0,01Na0,05)Σ=1,93B(Sb1,73Fe3+0,27)Σ=2,00X+Y[O6,64(OH)0,03]Σ=6,67 berechnet, die zur Formel für das Endglied Pb2Sb2O7 (bzw. Pb2Sb2O6O) vereinfacht wurde.

Das neben Oxyplumboroméit und den fraglichen Phasen Bindheimit, Pb2Sb2O6O und Taznit, Pb2Sb2O6O, einzige Mineral mit der Elementkombination Pb – Sb – O ist Rosiait, PbSb5+2O6.

Innerhalb der Pyrochlor-Obergruppe sind theoretisch durch die vier verschiedenen zu besetzenden Positionen eine Vielzahl von Substitutionsmöglichkeiten vorhanden. Oxyplumboroméit ist das Pb-dominante Analogon zum Ca-dominierten Oxycalcioroméit und zum Cu-dominierten, allerdings fraglichen Cuproroméit, Cu2Sb2(O,OH)7.

Bindheimit ist nicht identisch mit Monimolit, sondern aufgrund der wesentlich höheren Gehalte an H2O eher identisch mit dem als Mineral noch nicht beschriebenen Hydroxyplumboroméit. Konsequenterweise ist die generelle Annahme einer Identität von Bindheimit mit Oxyplumboroméit nicht gerechtfertigt.

Kristallstruktur

Oxyplumboroméit kristallisiert im kubischen Kristallsystem in der Raumgruppe Fd3m (Raumgruppen-Nr. 227)Vorlage:Raumgruppe/227 mit dem Gitterparameter a = 10,3783 Å sowie acht Formeleinheiten pro Elementarzelle.

Die Kristallstruktur des Oxyplumboroméits (vergleiche dazu die nebenstehende Strukturzeichnung) kann als dreidimensionales, für Vertreter der Pyrochlor-Obergruppe typisches Gerüst aus eckenverknüpften BO6-Oktaedern beschrieben werden, wobei in den Zwischenräumen dieses Gerüsts die A-Kationen sowie die Sauerstoffionen sitzen. Die achtfach koordinierte A-Position wird hauptsächlich durch Pb und untergeordnet auch durch Ca besetzt. Auf der oktaedrisch koordinierten B-Position sitzt neben Sb5+ untergeordnet auch Fe3+.

Oxyplumboroméit ist isotyp (isostrukturell) zu allen anderen in der Raumgruppe Fd3m (Raumgruppen-Nr. 227)Vorlage:Raumgruppe/227 kristallisierenden Vertretern der Pyrochlor-Obergruppe.

Eigenschaften

Morphologie

Oxyplumboroméit bildet an seiner Typlokalität verrundete Aggregate aus subidiomorphen oktaedrischen Kristallen {111}, an denen die Oktaederflächen nur zum Teil entwickelt sind. Die < 0,4 mm großen Kristalle treten zu maximal 2 mm großen Aggregaten zusammen.

Gustaf Flink beschrieb hingegen den Monimolit in Form von zwei verschiedenen Typen (vergleiche dazu die nebenstehenden Kristallzeichnungen). Typus I bildet kleine, nur Millimeter große Kristalle mit dem Oktaeder als dominanter Form, an denen durch das Ikositetraeder {311} die Ecken modifiziert sind als Zuspitzung der Ecken. Die Kristalle sind idiomorph ausgebildet und scharfkantig und zeigen insbesondere auf den Oktaederflächen einen starken Glanz. Die Flächen von {311} glänzen gewöhnlich weniger stark und sind mit zahlreichen unregelmäßigen Vertiefungen auf der Oberfläche versehen. Trachtbestimmende Form der Kristalle des Typus II ist das Hexaeder {100}, wozu Oktaeder {111} und Rhombendodekaeder {110} treten können. Das Oktaeder befindet sich zuweilen mit dem Würfel im Gleichgewicht, während das Rhombendodekaeder meist nur sehr untergeordnet erscheint. Die Flächen des Würfels sind oft ziemlich stark gewölbt. Ein Teil der Kristalle ist nach einer der drei kristallographischen Achsen verlängert – und in der dadurch bestimmten Zone sind die Flächen von {100} und {110} gleich stark entwickelt, so dass scheinbar achtseitige Prismen auftreten. Die Kristalle des Typus II sind ähnlich groß wie die des Typus I und besitzen ebene und glänzende Oberflächen. Auch in derben Massen und als Überzug. Schließlich auch in Pseudomorphosen nach primären Pb-Sb-haltigen Mineralen wie z. B. Bournonit, PbCu[SbS3].

Physikalische und chemische Eigenschaften

Die Kristalle des Oxyplumboroméits sind gelb bis bräunlichgelb, während Monimolit gelblich, bräunlichgrün oder dunkelbraun bis fast schwarz gefärbt ist und die Kristallflächen oft schöne bunte Anlauffarben aufweisen. Die Strichfarbe wird mit strohgelb bzw. zitronengelb oder zimtbraun angegeben. Die Oberflächen des durchscheinenden bis fast undurchsichtigen Monimolits zeigen einen fettartigen bis metallischen Glanz, wobei Monimolit-Kristalle des Typs II nur in dünnsten Splittern mit brauner Farbe durchscheinend sind. Der starke Glanz stimmt sehr gut mit dem sehr hohen Wert für die Lichtbrechung (n = 2,061) überein. Oxyplumboroméit ist optisch isotrop. Monimolit des Typs I ist im reflektierten Lichte braungelb, zuweilen mit einem Stich ins Grüne. Im Dünnschliff ist das Mineral gelbgrün, lichtdurchlässig und parallel (111) vollkommen optisch isotrop. Monimolit-Kristalle des Typs II sind auch im Dünnschliff nur wenig durchsichtig und lassen dort eine äußere, etwas stärker lichtdurchlässige Zone und einen inneren, schwächer lichtdurchlässigen Kern erkennen Ersterer weist oft Spuren von Doppelbrechung auf, letzterer ist optisch völlig isotrop.

Monimolit weist eine undeutliche Spaltbarkeit nach dem Oktaeder {111} auf. Aufgrund seiner Sprödigkeit bricht er aber ähnlich wie Amblygonit, wobei die Bruchflächen uneben ausgebildet sind. Für Monimolit wird ein halbmuscheliger bis splitteriger Bruch angegeben. Mit einer Mohshärte von ≈ 5 bzw. 5 bis 6 gehört das Mineral zu den mittelharten Mineralen und lässt sich wie die Referenzminerale Apatit (Härte 5) mit einem Taschenmesser noch bzw. wie Orthoklas (Härte 6) erst mit einer Stahlfeile ritzen. Die berechnete Dichte für Oxyplumboroméit beträgt 6,732 g/cm³. Angaben zur Fluoreszenz im langwelligen noch im kurzwelligen UV-Licht fehlen für das Mineral.

Monimolit schmilzt vor dem Lötrohr in der Zange zu einer schwarzen, blasigen Schlacke, gibt vor dem Lötrohr auf Kohle einen Blei- und Antimonbeschlag sowie leicht ein aus Blei und Antimon bestehendes, glänzendes, geschmeidiges Metallkorn. Beim Erhitzen im Kölbchen entweicht nichts Flüchtiges. Borax und Phosphorsalz lösen das Mineral auch in ziemlich erheblicher Menge zu einem gelben Glas, das sich in der Reduktionsflamme nicht verändert; mit Soda Manganreaktion. Mit Ausnahme der Abart „Typus II“, die sich leicht in schmelzendem Alkalicarbonat löst, sind sämtliche untersuchten Monimolite weder in den stärksten Säuren noch in gelösten oder schmelzenden kaustischen und kohlensauren Alkalien löslich. Nach Reduktion im Wasserstoffstrom ist das Mineral säurelöslich.

Bildung und Fundorte

Die Typlokalität für Oxyplumboroméit ist ein Tephroit-Skarn im Eisen-Mangan-Bergwerk „Harstigen“ („Harstigsgruvan“) bei Pajsberg in der Gemeinde Filipstad, Provinz Värmlands län bzw. der historischen Provinz Värmland im zentralen Schweden. Die kleine Fe-Mn-Lagerstätte mit einer ähnlichen Mineralisation wie Långban ist 33 m tief, 15 m lang sowie 2 m breit und sitzt in einer Dolomitlinse zwischen kaliumhaltigen Metarhyolithen und basischen Gesteinen. Sie stand zwischen 1847 und 1853 sowie von 1887 bis 1889 in Abbau; die Gesamtförderung betrug 356 Tonnen Eisenerz und 153 Tonnen Manganerz.

Oxyplumboroméit findet sich an seiner Typlokalität in bis zu 2 cm mächtigen Klüften in einem Tephroit-Skarn. Zu den Begleitmineralen des Oxyplumboroméits gehören Calcit und Leucophoenicit. Monimolit Typus I aus Harstigen fand sich auf Sprüngen und in Spalten derb bzw. bei größerem Raumangebot auch in Kristallen, begleitet von kleinen plattigen Magnetit-Oktaedern, die von einem Filzwerk aus haarfeinen nadeligen Richterit-Kristallen umgeben sind. Weitere Begleiter sind grauer Tephroit und heller Hedyphan. Monimolit Typus II aus Harstigen tritt nur in ziemlich weiten, nachträglich mit Calcit ausgefüllten Spalten auf und wird von derbem Tephroit und gelbbraunem nadeligen Richterit begleitet, der in dichten Massen zwischen den Monimolit-Kristallen sitzt. In der Umgebung des Minerals treten ferner gelber Granat in kleinen unregelmäßigen Körnern sowie derber Hedyphan und Schuppen von Graphit oder Molybdänit auf. Monimolit aus Långban trat, begleitet von Rhodonit und Tephroit, eingewachsen in Calcit auf.

Als seltene Mineralbildung konnte der Oxyplumboroméit bisher (Stand 2018) neben seiner Typlokalität weltweit erst von ca. 30 weiteren Fundorten beschrieben werden.

Außer der Typlokalität sind die folgenden Fundorte bekannt:

Fundstellen für Oxyplumboroméit in der Schweiz sind damit unbekannt.

Verwendung

Oxyplumboroméit ist aufgrund seiner Seltenheit ohne jede praktische Bedeutung und nur für Mineralsammler interessant.

Siehe auch

Literatur

  • Ulf Hålenius, Ferdinando Bosi: Oxyplumboroméite, Pb2Sb2O7, a new mineral species of the pyrochlore supergroup from Harstigen mine, Värmland, Sweden. In: Mineralogical Magazine. Band 77, Nr. 7, 2013, S. 2931–2939, doi:10.1180/minmag.2013.077.7.04 (englisch).
  • Monimolite. In: John W. Anthony, Richard A. Bideaux, Kenneth W. Bladh, Monte C. Nichols (Hrsg.): Handbook of Mineralogy, Mineralogical Society of America. 2001 (handbookofmineralogy.org [PDF; 66 kB; abgerufen am 19. Oktober 2018]).
  • Oxyplumboroméite. In: John W. Anthony, Richard A. Bideaux, Kenneth W. Bladh, Monte C. Nichols (Hrsg.): Handbook of Mineralogy, Mineralogical Society of America. 2001 (handbookofmineralogy.org [PDF; 119 kB; abgerufen am 19. Oktober 2018]).
  • Friedrich Klockmann: Klockmanns Lehrbuch der Mineralogie. Hrsg.: Paul Ramdohr, Hugo Strunz. 16. Auflage. Enke, Stuttgart 1978, ISBN 3-432-82986-8, S. 520 (Erstausgabe: 1891, als Monimolit).
  • Hans Jürgen Rösler: Lehrbuch der Mineralogie. 4. durchgesehene und erweiterte Auflage. Deutscher Verlag für Grundstoffindustrie (VEB), Leipzig 1987, ISBN 3-342-00288-3, S. 416 (als Monimolit).
Commons: Oxyplumboroméite – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. Malcolm Back, Cristian Biagioni, William D. Birch, Michel Blondieau, Hans-Peter Boja und andere: The New IMA List of Minerals – A Work in Progress – Updated: January 2023. (PDF; 3,7 MB) In: cnmnc.main.jp. IMA/CNMNC, Marco Pasero, Januar 2023, abgerufen am 26. Januar 2023 (englisch).
  2. Laurence N. Warr: IMA–CNMNC approved mineral symbols. In: Mineralogical Magazine. Band 85, 2021, S. 291–320, doi:10.1180/mgm.2021.43 (englisch, cambridge.org [PDF; 320 kB; abgerufen am 5. Januar 2023]).
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Ulf Hålenius, Ferdinando Bosi: Oxyplumboroméite, Pb2Sb2O7, a new mineral species of the pyrochlore supergroup from Harstigen mine, Värmland, Sweden. In: Mineralogical Magazine. Band 77, Nr. 7, 2013, S. 2931–2939, doi:10.1180/minmag.2013.077.7.04 (englisch).
  4. 1 2 3 4 5 Oxyplumboroméite. In: mindat.org. Hudson Institute of Mineralogy, abgerufen am 29. April 2020 (englisch).
  5. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Karl Schulz: Monimolit. (Pb,Fe,Mn)3(SbO4)2. In: Gottlob Linck (Hrsg.): Handbuch der Mineralogie von Dr. Carl Hintze. Borate, Aluminate und Ferrate. Phosphate, Arsenate, Antimoniate, Niobate und Tantalate 1. Teil Phosphate, Arsenate, Antimoniate, Niobate und Tantalate : A. Saure und normale wasserfreie Salze. 1. Auflage. Band 1, Vierte Abteilung. Erste Hälfte. Walter de Gruyter & Co., Berlin und Leipzig 1933, S. 215–217 (eingeschränkte Vorschau in der Google-Buchsuche).
  6. Lars Johan Igelström: Nya och sällsynta mineralier från Vermland. In: Öfversigt af Kongl. Vetenskaps-Akademiens Förhandlingar. Band 22, Nr. 4, 1865, S. 227–229 (schwedisch, rruff.info [PDF; 131 kB; abgerufen am 19. Oktober 2018]).
  7. Brian Mason, Charles J. Vitaliano: The mineralogy of the antimony oxides and antimonates. In: Mineralogical Magazine. Band 30, 1953, S. 100–112 (englisch, rruff.info [PDF; 583 kB; abgerufen am 19. Oktober 2018]).
  8. 1 2 Adolf Erik Nordenskiöld: Nya mineralier från Långban. In: Geologiska Föreningens i Stockholm Förhandlingar. Band 3, 1877, S. 376–384 (schwedisch, rruff.info [PDF; 357 kB; abgerufen am 19. Oktober 2018]).
  9. 1 2 3 4 5 6 7 8 Daniel Atencio, Marcelo B. Andrade, Andrew G. Christy, Reto Gieré, Pavel M. Kartashov: The Pyrochlore supergroup of minerals: Nomenclature. In: The Canadian Mineralogist. Band 48, 2010, S. 673–698, doi:10.3749/canmin.48.3.673 (englisch, rruff.info [PDF; 1,4 MB; abgerufen am 30. August 2018]).
  10. 1 2 Andrew G. Christy, Daniel Atencio: Clarification of status of species in the pyrochlore supergroup. In: Mineralogical Magazine. Band 77, Nr. 1, 2013, S. 13–20, doi:10.1180/minmag.2013.077.1.02 (englisch, main.jp [PDF; 85 kB; abgerufen am 30. August 2018]).
  11. Cristian Biagioni, Paolo Orlandi, Fabrizio Nestola, Sara Bianchin: Oxycalcioroméite, Ca2Sb2O6O, from Buca della Vena mine, Apuan Alps, Tuscany, Italy: a new member of the pyrochlore supergroup. In: Mineralogical Magazine. Band 77, 2013, S. 3027–3037, doi:10.1180/minmag.2013.077.7.12 (englisch).
  12. Hugo Strunz, Ernest H. Nickel: Strunz Mineralogical Tables. 9. Auflage. E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart 2001, ISBN 3-510-65188-X, S. 224 (als Monimolit).
  13. Oxyplumboroméite. In: mindat.org. Hudson Institute of Mineralogy, abgerufen am 29. April 2020 (englisch).
  14. 1 2 Fundortliste für Oxyplumboroméit beim Mineralienatlas und bei Mindat, abgerufen am 29. April 2020.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.