Das Satz von Tamano ist ein Lehrsatz aus dem mathematischen Teilgebiet der Topologie, der auf den japanischen Mathematiker Hisahiro Tamano zurückgeht. Er charakterisiert die Parakompaktheit topologischer Räume mittels der Konzepte von Normalität und Kompaktheit unter Einbeziehung der Stone-Čech-Kompaktifizierung.

Formulierung des Satzes

Für jeden Hausdorff-Raum sind die folgenden Bedingungen gleichwertig:

  1. ist parakompakt.
  2. ist vollständig regulär und das topologische Produkt von mit seiner Stone-Čech-Kompaktifizierung ist normal.
  3. Das topologische Produkt von mit jedem beliebigen kompakten Hausdorff-Raum ist normal.

Korollar

Für jeden parakompakten Hausdorff-Raum und jeden kompakten Hausdorff-Raum ist das topologische Produkt ein parakompakter Hausdorff-Raum.

Dies folgt sofort mit (3) und dem Satz von Tychonoff. Dieses Korollar wiederum zieht seinerseits das folgende Resultat nach sich:

Für jeden Hausdorff-Raum sind die folgenden beiden Bedingungen gleichwertig:

  1. ist normal für jeden parakompakten Hausdorff-Raum .
  2. ist parakompakt für jeden parakompakten Hausdorff-Raum .

Literatur

Artikel

  • Hisahiro Tamano: On Paracompactness. In: Pacific Journal of Mathematics. Band 10, Nr. 3, 1960, S. 1043–1047, doi:10.2140/pjm.1960.10.1043.

Monografien

  • Gregory Naber: Set-theoretic Topology. With emphasis on problems from the theory of coverings, zero dimensionality and cardinal invariants. University Microfilms International, Ann Arbor MI 1977, ISBN 0-8357-0257-X.
  • Jun-iti Nagata: Modern General Topology (= North Holland Mathematical Library. Band 33). 2. überarbeitete Auflage. North-Holland Publishing, Amsterdam / New York / Oxford 1985, ISBN 0-444-87655-3 (MR0831659).
  • Horst Schubert: Topologie. Eine Einführung. 4. Auflage. B. G. Teubner, Stuttgart 1975, ISBN 3-519-12200-6.
  • Stephen Willard: General Topology. Addison-Wesley, Reading MA u. a. 1970.

Einzelnachweise

  1. Tamano: On Paracompactness. 1960, S. 1043–1047.
  2. Naber: Set-theoretic Topology. 1977, S. 161.
  3. Nagata: Modern General Topology. 1985, S. 237.
  4. Willard: General Topology. 1970, S. 154.
  5. Naber: Set-theoretic Topology. 1977, S. 148.
  6. Nagata: Modern General Topology. 1985, S. 223.
  7. Schubert: Topologie. 1975, S. 85.
  8. Naber: Set-theoretic Topology. 1977, S. 163.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.