Der lemniskatische Sinus oder sinus lemniscatus (kurz sinlemn oder ) ist eine spezielle, von dem Mathematiker Carl Friedrich Gauß eingeführte mathematische Funktion. Der lemniskatische Sinus entspricht derjenigen Funktion für die Lemniskate, die der Sinus für den Kreis ist. Der lemniskatische Cosinus (kurz coslemn oder ) leitet sich direkt von ab. Beides sind die historisch ersten, heute so genannten elliptischen Funktionen. Nach der Definition durch Jacobi ist der Kehrwert der Quadratwurzel aus Zwei der elliptische Modul der lemniskatischen Funktionen.
Geschichte
Der 19-jährige Gauß beschäftigte sich 1796 (in erst nach seinem Tod veröffentlichten Notizen) mit der Frage, wie man aus einer gegebenen Bogenlänge einer Lemniskate den Abstand des entsprechenden Punktes auf der Kurve vom Koordinatenursprung berechnen kann. Mathematisch führt das auf die Umkehrfunktion des elliptischen Integrals
Beweis:
Für den ersten und dritten Quadrant kann die Lemniskate von Bernoulli auf folgende Weise parametrisiert werden: x und y als Koordinaten eines Punktes auf der Kurve im Abstand r vom Ursprung (Pythagoras) erfüllen die Lemniskatengleichung. Aus diesen zwei Gleichungen ergeben sich
- und
Für die Berechnung der vom Ursprung ausgehenden Kurvenlänge s wird der Pythagoras der ersten Ableitungen von x und y gebildet und dieser integriert:
Gauß nannte diese Umkehrfunktion Sinus lemniscatus und bezeichnete sie mit , also
Entsprechend definierte er den Cosinus lemniscatus , wobei die Länge des Halbbogens der Lemniskate ist, also
Gauß ließ sich bei diesen Bezeichnungen von der Analogie zu den Kreisfunktionen leiten, denn der Sinus ist die Umkehrfunktion des Integrals
also und . Seine weitere entscheidende Idee war es nun, die Funktionen und nicht nur für reelle Zahlen zu definieren, sondern sie ins Komplexe fortzusetzen. Er bewies dann die Periodizitätsrelationen
Im Gegensatz zum Sinus hat also der lemniskatische Sinus zwei Perioden und , ebenso die Funktion . Die lemniskatischen Funktionen sind also elliptisch. Carl Gustav Jacobi führte um 1830 die jacobischen elliptischen Funktionen ein und verallgemeinerte damit die beiden lemniskatischen Funktionen. Diese lassen sich auf folgende Weise durch die Jacobi-Funktionen mit dem Modul λ*(1) = 1/sqrt(2) ausdrücken:
- und
Somit sind der lemniskatische Sinus und der lemniskatische Cosinus auch über die Thetafunktionen auf folgende Weise definierbar:
- und
Algebraische Beziehungen
Folgende algebraische Beziehung gilt für die lemniskatischen Funktionen:
Die Additionstheoreme für die lemniskatischen Funktionen lauten wie folgt:
Alternative Darstellungen für die Additionstheoreme:
Dabei gilt die Beziehung sl' = cl*(1+sl^2).
Darstellung über den Arkustangens:
Für die Verdopplung gelten diese Formeln:
Dementsprechend gelten folgende Formeln für die Halbierung:
Für die Verdreifachung gilt Folgendes:
Diese alternativen Darstellungen ermöglichen eine Umkehrung durch Lösen kubischer Gleichungen:
Der Cosinus Lemniscatus ergibt sich als negatives Analogon zum Sinus Lemniscatus:
Ableitungen
Die lemniskatischen Funktionen haben folgende Ableitungen:
Daraus folgt die Tatsache, dass die zweite Ableitung das negative doppelte vom Kubus ist.
Über die Formeln der Ableitungen lassen sich ebenso die Stammfunktionen von Sinus Lemniscatus und Cosinus lemniscatus ermitteln.
Spezielle Werte
Einzelne Funktionswerte für die lemniskatischen Funktionen:
Weitere lemniskatische Funktionswerte in trigonometrischer Darstellung:
Reihenentwicklungen
Schnell konvergierende Reihen zur numerischen Berechnung des lemniskatischen Sinus und Cosinus sind:
sowie
wobei die Präzision der Annäherung mit endlichem oberen Index wie verläuft. Beide Reihen zeigen deutlich den Zusammenhang mit den Kreisfunktionen.
Weitere Reihendarstellungen über alternierende Summen des Secans hyperbolicus lauten:
und
Basierend auf der Summendefinition der Jacobischen Zetafunktion können diese nicht alternierenden Summen aufgestellt werden:
Zusatzinformation:
Die Tangenshalbierungen von Sinus lemniscatus und Cosinus lemniscatus führen zu den Jacobi-Funktionen mit dem Modul λ*(4):
Noch viel schneller konvergieren folgende zwei Reihen für die lemniskatischen Funktionen:
Folgende Produktreihen für die lemniskatischen Funktionen konvergieren schnell:
Elliptische Lambdafunktion
Diejenigen elliptischen Module, welche die Lambda-Stern-Funktionswerte von den Doppelten der ungeraden natürlichen Zahlen sind, können vereinfacht mit dem Halbierungstheorem als Sinus-Lemniscatus-Quadrat dargestellt werden:
Muttermodul (Mm) | Tochtermodul (Tm) | Pythagoräisches Gegenstück vom Tm | Pythagoräisches Gegenstück vom Mm
= Tangentielles Gegenstück vom Tm |
---|---|---|---|
Weitere Werte:
Siehe auch
Literatur
- E. D. Solomentsev: Lemniscate functions. In: Michiel Hazewinkel (Hrsg.): Encyclopedia of Mathematics. Springer-Verlag und EMS Press, Berlin 2002, ISBN 1-55608-010-7 (englisch, encyclopediaofmath.org).
- Whittaker, E. T. and Watson, G. N.: A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, 1990. p. 508
Weblinks
- Eric W. Weisstein: Lemniscate Function. In: MathWorld (englisch).
Einzelnachweise
- ↑ Derivative of the Jacobi theta function: Introduction to the Jacobi theta functions. Abgerufen am 1. August 2021.
- ↑ https://www.mdpi.com/2073-8994/12/6/1040
- ↑ Eric W. Weisstein: Elliptic Lambda Function. Abgerufen am 20. Februar 2022 (englisch).