In der Affinen Geometrie, einem der Teilgebiete der Mathematik, ist das Tamaschke-Axiom (oder auch Dreiecksaxiom) eine derjenigen Aussagen, mit deren Hilfe sich die dort auftretenden Inzidenzgeometrien axiomatisch festlegen lassen. Das Axiom ist nach dem Tübinger Mathematiker Olaf Tamaschke benannt, der als erster seine Bedeutung für die Geometrie erkannte.
Formulierung des Axioms
Das Tamaschke-Axiom fordert für Inzidenzgeometrien , die dem Verbindungsaxiom und dem Parallelenaxiom genügen, die folgende zusätzliche Eigenschaft:
- Sind in fünf Raumpunkte gegeben, wobei nicht auf einer gemeinsamen Geraden liegen sollen, und sind hier die Geraden und parallel, so treffen sich die Parallele zu durch und die Parallele zu durch in einem gemeinsamen Schnittpunkt .
Axiomatik der affinen Räume
Gemäß der Darstellung von Albrecht Beutelspacher sind die affinen Räume genau diejenigen Inzidenzgeometrien, in denen sowohl
- das Verbindungsaxiom
als auch
- das Parallelenaxiom
als auch
- das Tamaschke-Axiom
erfüllt sind.
Anmerkungen und Erläuterungen
- Die obige Bedingung, dass nicht auf einer gemeinsamen Gerade liegen sollen, bedeutet – anschaulich!– nichts weiter, als dass die Punkte ein Dreieck bilden. Dies erklärt, warum das Tamaschke-Axiom auch als Dreiecksaxiom bezeichnet wird.
- Geht man den in der Analytischen Geometrie üblichen Weg, die affinen Räume ausgehend von den zugehörigen Vektorräumen der Verbindungsvektoren zu definieren, so ergibt sich das Tamaschke-Axiom in diesem Rahmen als Lehrsatz.
- Für eine axiomatische Begründung der affinen Raumgeometrie im engeren Sinne reichen die obigen Axiome nicht aus. Hier muss man – nicht zuletzt wegen der Inzidenzen zwischen Ebenen und Geraden sowie Ebenen und Raumpunkten − eine erweiterte Axiomatik schaffen.
Literatur
- Albrecht Beutelspacher: Lineare Algebra. Eine Einführung in die Wissenschaft der Vektoren, Abbildungen und Matrizen. 8., aktualisierte Auflage. Springer Spektrum, Wiesbaden 2014, ISBN 978-3-658-02412-3, doi:10.1007/978-3-658-02413-0.
- Gerd Fischer: Analytische Geometrie. Eine Einführung für Studienanfänger (= Vieweg Studium. Grundkurs Mathematik). 7., durchgesehene Auflage. Vieweg Verlag, Braunschweig, Wiesbaden 2001, ISBN 978-3-322-88921-8, doi:10.1007/978-3-322-88921-8.
- H. Lenz: Grundlagen der Elementarmathematik. 3., überarbeitete Auflage. Hanser Verlag, München (u. a.) 1976, ISBN 3-446-12160-9 (MR0460009).
- Olaf Tamaschke: Projektive Geometrie II (= BI-Hochschulskripten. 838/a/b). Bibliographisches Institut, Mannheim, Wien, Zürich 1972 (MR0338893).
Einzelnachweise
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.