Auflösung (Mikroskopie)

Unter optischer oder räumlicher Auflösung versteht man in der Mikroskopie den Abstand, den zwei Strukturen mindestens haben müssen, um nach der optischen Abbildung noch als getrennte Bild-Strukturen wahrgenommen zu werden. Dabei wird beispielsweise der zur getrennten Erkennung nötige minimale Abstand zweier punktförmiger Objekte oder der minimale Abstand zwischen Linien in einem optischen Gitter betrachtet.

Die erreichbare Auflösung ist in der klassischen Lichtmikroskopie fundamental dadurch begrenzt, dass die das Objekt umgebenden optischen Nahfelder nicht durch das optische System übertragen werden, was manchmal auch als Beugung am freien Raum bezeichnet wird. Dieser minimale Objektabstand wird als Auflösungsgrenze oder Abbe-Limit bezeichnet. Ernst Abbe hat diese Beziehung im 19. Jahrhundert beschrieben. Neuere methodische Ansätze erlauben eine Auflösung deutlich jenseits dieser Grenze, sie werden zusammenfassend als englisch Superresolution Microscopy (deutsch superauflösende Mikroskopie) bezeichnet. Derartige Techniken sind beispielsweise RESOLFT-Mikroskopie mit STED-Mikroskopie, Mikroskopie mit modulierter Beleuchtung (SIM), Photoactivated Localization Microscopy (STORM-Mikroskopie) und optisches Rasternahfeldmikroskop.

Es gibt verschiedene Ansätze, die erzielbare Auflösung zu bestimmen. Abbe ging von einem Gitter mit eng beieinander liegenden Linien aus, die von Licht durchstrahlt werden, und berechnete, wie dicht die Linien sein dürfen, so dass sie gerade noch als Linien aufgelöst werden können. Abbe untersuchte beleuchtete (passive) Objekte. John William Strutt, 3. Baron Rayleigh betrachtete punktförmige Lichtquellen. Er beschrieb den Abstand aktiver Objekte, die gerade noch als getrennt zu erkennen waren. Diesem Ansatz verwandt ist die Bestimmung der Halbwertsbreite des mikroskopischen Signals einer punktförmigen Lichtquelle. Alle drei Ansätze führen rechnerisch zu sehr ähnlichen Werten für die Auflösung.

Um die theoretisch mögliche Auflösung zu ermöglichen, ist es erforderlich, dass genügend Licht gesammelt wird. Bei Hellfeldmikroskopie ist dies in der Regel unproblematisch. Bei der Fluoreszenzmikroskopie können niedrige Intensitäten in Verbindung mit kurzen Belichtungszeiten dazu führen, dass zu wenige Photonen am Detektor auftreffen und der erreichte Kontrast zur getrennten Erkennung der Strukturen nicht ausreicht.

Von der Auflösung zu unterscheiden ist die Nachweisbarkeit und die erreichbare Positionierungsgenauigkeit. Mit Dunkelfeldmikroskopie, besonders der Ultramikroskopie, oder der Fluoreszenzmikroskopie lassen sich noch Partikel nachweisen, deren Größe erheblich unter der Auflösungsgrenze liegt, bei Fluoreszenzmikroskopie bis hinunter zu einzelnen Farbstoffmolekülen. Bei der Positionierungsgenauigkeit geht es darum, die Position einer Oberfläche oder eines Körpers möglichst genau im Raum zu bestimmen. Dazu kann das Helligkeitsmaximum des von einem Körper ausgehenden Lichts bestimmt werden. Dies ist mit einer Genauigkeit im Nanometerbereich möglich. In beiden Fällen unterschreitet die Auflösung jedoch nicht die Auflösungsgrenze: Es ist beispielsweise nicht möglich festzustellen, ob ausgesandtes Licht tatsächlich von einer punktartigen Struktur stammt oder von mehreren nahe beieinander liegenden.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.