Hilbert-Kurve
In der Mathematik ist die Hilbert-Kurve eine (stetige) Kurve, die, wie in der nebenstehenden animierten Abb. 1 veranschaulicht, als Grenzkurve von Polygonzügen die Fläche eines Quadrats vollständig ausfüllt. Sie ist eine sogenannte FASS-Kurve, somit eine raumfüllende Kurve (engl. space-filling curve, abgekürzt SFC) und wurde 1891 von dem deutschen Mathematiker David Hilbert entdeckt. Die Möglichkeit, mit einer stetigen eindimensionalen Kurve ein zweidimensionales Gebiet komplett abdecken zu können, war den Mathematikern des neunzehnten Jahrhunderts neu (siehe auch Monsterkurve).
Die Hilbert-Kurve wird durch rekursive Iteration definiert und konstruiert. Die -te Rekursionsstufe wird Hilbert-Kurve der -ten Iteration, , und der die Teilquadrate verbindende Polygonzug Hilbert-Polygon der -ten Iteration genannt. Die Hilbert-Kurven und die Hilbert-Polygone endlicher Iterationen haben denselben Grenzwert, nämlich die Hilbert-Kurve im engeren Sinn. Die euklidische Länge des Hilbert-Polygons ist , das heißt, sie wächst mit der Nummer der Iteration über alle Grenzen. Die Hilbert-Kurve hat im Limes eine Hausdorff-Dimension von exakt 2, genau wie das Quadrat.
Mithilfe der Hilbert-Kurve endlicher Iteration kann man die Teilquadrate und mithilfe des Limes die Punkte im Quadrat in eine lineare Reihenfolge bringen, die Hilbert-Ordnung genannt wird. Mit ihr lassen sich (effiziente) Verfahren, die auf einer linearen Ordnung beruhen, ins Mehrdimensionale übertragen. Dazu gehört binäres Suchen, binärer Suchbaum, Skip-Liste und andere.
Beim direkten Zugriff steht die Hilbert-Ordnung in Konkurrenz zu einem Zugriff, bei dem die linearen Ordnungen der Dimensionen in unterschiedlicher Rangigkeit zu einer lexikographischen Ordnung hintereinander geschaltet sind – im internen Speicher über ein mehrfach indiziertes Feld resp. im externen Speicher per wahlfreien Zugriff (Random Access). Wenn sich dies gut organisieren lässt, schneidet sie etwas schlechter ab. Sie ist aber überlegen, wenn es sich um eine ungefähre Suche handelt, an die sich eine sequentielle Suche anschließt, bei der Nachbarschaftsbeziehungen (engl. clustering) vorteilhaft ausgenutzt werden können. Dies ist bei -dimensionalen Räumen , bei denen Nachbarschaft durch die euklidische Metrik definiert ist, häufig der Fall – beispielsweise, wenn auf geographische Merkmale eines Objekts über die Schlüssel Länge und Breite zugegriffen werden soll. Die Hilbert-Kurve ist beliebt aufgrund ihrer guten Nachbarschaftserhaltung. Bei der Z-Kurve ist die Rechnung geringfügig einfacher, aber die Nachbarschaftserhaltung deutlich schlechter.
Die Zuordnung der Hilbert-Kurve einer (endlichen) -ten Iteration ist umkehrbar und kann zu beliebiger Feinheit gesteigert werden. Dieses und die gute Nachbarschaftserhaltung hat eine Vielfalt von Anwendungen der Hilbert-Kurve in der Informatik eröffnet, so in der Bildverarbeitung, Datendarstellung, im Hochleistungsrechnen und in anderen Gebieten.