Lagrange-Kreisel
Der Lagrange-Kreisel ist ein schwerer symmetrischer Kreisel, dessen Stützpunkt und Massenmittelpunkt beide auf seiner Figurenachse liegen, sodass die Gewichtskraft ein Drehmoment auf ihn ausübt:88:78:109:188. Eine typische Kreiselbewegung zeigt Abb. 1.
Joseph-Louis Lagrange konnte 1788 als erster die zugehörigen Bewegungsgleichungen lösen, weswegen Lagranges Name mit diesem Kreisel verbunden ist. Gegenüber dem kräftefreien Euler-Kreisel bekommt der Lagrange-Kreisel durch die auf der Erde allgegenwärtige Schwerkraft eine besondere Relevanz. Er ist kreiseltheoretisch eng verwandt mit dem reibungsfreien Spielkreisel.
Die Bahnlinie eines Punktes auf der Figurenachse, kurz die Locuskurve, ähnelt einer Zykloide und kann Spitzen oder Schleifen besitzen, siehe Abb. 3 bis 5. Besondere Bewegungsformen des Lagrange-Kreisels sind die reguläre Präzession, bei der der Kreisel gleichförmig um die Vertikale kreist, siehe Abb. 1, 7 und 8. Die pseudoreguläre Präzession ist von der regulären zwar mit dem Auge nicht zu unterscheiden, führt aber auf kleinskaliger Ebene rasche Schwingungen aus. Paradox erscheint die reguläre oder pseudoreguläre Präzession mit horizontaler Figurenachse, die der Kreisel entgegen seiner Gewichtskraft beibehalten kann, siehe Abb. 2. Die Bewegung des lotrecht hängenden Kreisels ist immer stabil, bei der lotrecht aufrechten Position muss für die Stabilität eine kritische Winkelgeschwindigkeit überschritten werden. In dem Fall verlässt der Kreisel die Senkrechte nicht ohne Anlass und wird schlafender Kreisel genannt. Der nicht um seine Figurenachse drehende Lagrange-Kreisel ist ein sphärisches Pendel, das hier nur am Rand berührt wird.:201
Die Bewegungen des Lagrange-Kreisels sind neben denen des Euler- und Kowalewskaja-Kreisels eine der drei immer integrablen Fälle. Insbesondere die Locuskurve lässt sich analytisch untersuchen und gibt so Aufschluss über die Kreiselbewegung und ihre Stabilität gegenüber Störungen.
Der Lagrange-Kreisel wird durch einen typischen Spielzeugkreisel realisiert, wenn dessen Aufsetzpunkt wie in der Animation am Boden frei drehbar fixiert ist, eine Einschränkung, die beim Vergleich des Spielkreisels mit dem Lagrange-Kreisel diskutiert wird.