Quadratisches Reziprozitätsgesetz

Das quadratische Reziprozitätsgesetz, gelegentlich auch Gaußsches Reziprozitätsgesetz, ist ein grundlegendes Gesetz aus der Zahlentheorie, einem Teilgebiet der Mathematik. Es beschäftigt sich mit der Frage, ob es zu einer ganzen Zahl und einer ungeraden Primzahl eine Quadratzahl gibt, sodass die Differenz durch teilbar ist. Genau genommen gibt es, zusammen mit den beiden unten genannten Ergänzungssätzen, ein Verfahren an, um zu entscheiden, ob eine Zahl quadratischer Rest oder Nichtrest einer Primzahl ist. Die Entdeckung des quadratischen Reziprozitätsgesetzes durch Leonhard Euler und der Beweis durch Gauß (Disquisitiones Arithmeticae 1801, er hatte aber bereits 1796 einen Beweis) waren die Ausgangspunkte der Entwicklung der modernen algebraischen Zahlentheorie.

Um die genaue Aussage des quadratische Reziprozitätsgesetzes zu verstehen, sind lediglich die Konzepte der Quadratzahlen, der Primzahlen und der Teilbarkeit ganzer Zahlen mit Rest vonnöten. Seine Formulierung beginnt mit der Auswahl zweier ungerader, ungleicher Primzahlen und , etwa und . Im Zentrum steht die folgende Fragestellung:

Existiert eine Quadratzahl , sodass die Differenz teilt? (Mit den oberen Beispielwerten: Ist die Zahl für eine Quadratzahl durch teilbar?).

Innerhalb dieser Fragestellung haben die beiden Primzahlen und eine unterschiedliche Stellung ( ist „Teiler“ und ist „Subtrahend“). Das Wort „Reziprozität“ (von „reziprok“, also wechselseitig) deutet nun an, dass dieselbe Frage ebenfalls unter Vertauschung der Rollen beider Primzahlen gefragt werden kann: Gibt es also eine (zweite) Quadratzahl , sodass wiederum die Differenz teilt? Das quadratische Reziprozitätsgesetz formuliert eine einfache Regel, die die Lösbarkeit der zwei Aufgaben, die durch Vertauschen der Rollen beider Primzahlen entstehen, miteinander in Beziehung setzt. Es unterscheidet:

  • Hat mindestens eine der beiden Primzahlen und bei Teilung durch den Rest , so ist die eine Frage genau dann mit „Ja“ zu beantworten, wenn es auch die andere ist. Zum Beispiel hat bei Teilung durch den Rest . Mit den Wahlen , und erhält man und , wobei Ersteres durch und Letzteres durch teilbar ist (es ist ). Also lässt sich die Frage im Falle von und wechselseitig mit „Ja“ beantworten, wie es das Reziprozitätsgesetz vorhersagt. Im Gegensatz dazu existieren keine Quadratzahlen und , sodass durch und durch teilbar ist.
  • Haben hingegen beide Primzahlen und bei Teilung durch den Rest , so ist stets genau eine der Fragen mit „Ja“ zu beantworten. Beispiel und : Es ist durch teilbar, es gibt aber keine Quadratzahl , sodass durch teilbar ist. Es haben sowohl als auch bei Division mit den Rest .

Das quadratische Reziprozitätsgesetz ist aus mathematischer Sicht unter anderem von Interesse, da es kausale Zusammenhänge zwischen scheinbar völlig verschiedenen Fragestellungen aufbaut. Das führt dazu, dass die Lösung einer mitunter sehr schweren Aufgabe auf das Lösen einer leichten Aufgabe zurückgeführt werden kann, weshalb es für konkrete Berechnungen von Nutzen ist. Zahlreiche Anwendungen findet es in der Zahlentheorie, der Theorie diophantischer Gleichungen, aber auch in praktischen Gebieten wie der Kryptographie.

Gauß selbst hat acht methodisch verschiedene Beweise für das quadratische Reziprozitätsgesetz vorgelegt. Da er die Bedeutung des Resultats bereits als außerordentlich hoch erkannte, bezeichnete er sein Resultat als „Fundamentaltheorem“ bzw. „Theorema aureum“ (deutsch: „Goldener Satz“) der Zahlentheorie. Die Bezeichnung „Reziprozitätsgesetz“ geht indes auf Adrien-Marie Legendre zurück, der im Jahr 1785 einen unvollständigen Beweis lieferte. Spätere (vollständige) Beweise stammen unter anderem von Gotthold Eisenstein, Peter Gustav Lejeune Dirichlet, Richard Dedekind und Jegor Iwanowitsch Solotarjow. Bis heute sind mehr als 300 verschiedene Beweise publiziert worden. Trotz elementarer Beweise liegt das Wesen der „Reziprozität“, wie schon Gauß vermutete, relativ tief, nämlich in der Primfaktorzerlegung in den Kreisteilungskörpern.

Das quadratische Reziprozitätsgesetz macht Aussagen über die Lösbarkeit quadratischer Gleichungen in der modularen Arithmetik. Die Frage nach der Lösbarkeit von Gleichungen höheren Grades führt auf die höheren Reziprozitätsgesetze, was eine der treibenden Kräfte der algebraischen Zahlentheorie seit Gauß war. Den Fall dritten Grades, das kubische Reziprozitätsgesetz, behandelte Gotthold Eisenstein, den Fall vierten Grades Gauß, wobei jedoch Carl Gustav Jacobi den ersten vollständigen Beweis vorlegte. Eine moderne, sehr viel tiefer liegende, Verallgemeinerung findet sich in den Grundlagen der Klassenkörpertheorie.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.