Standardfehler der Regression

Der (geschätzte) Standardfehler der Regression (englisch (estimated) standard error of regression, kurz: SER), auch Standardschätzfehler, Standardfehler der Schätzung (englisch standard error of the estimate), oder Quadratwurzel des mittleren quadratischen Fehlers (englisch Root Mean Squared Error, kurz RMSE) ist in der Statistik und dort insbesondere in der Regressionsanalyse Maß für die Genauigkeit der Regression. Er ist definiert als Quadratwurzel des erwartungstreuen Schätzers für die unbekannte Varianz der Störgrößen (der Residualvarianz) und kann als Quadratwurzel des „durchschnittlichen Residuenquadrats“ (englisch root mean squared error, kurz RMSE) interpretiert werden, das bei der Verwendung der berechneten Regressionsgerade zur Vorhersage der Zielvariablen entsteht. Er misst also den durchschnittlichen Abstand der Datenpunkte von der Regressionsgerade. Der Standardfehler der Regression kann verwendet werden, um die Varianzen der Regressionsparameter zu schätzen, da diese von der unbekannten Standardabweichung abhängen. Der Standardfehler der Regression und das Bestimmtheitsmaß sind die in der Regressionsanalyse am häufigsten angewendeten Maßzahlen. Allerdings folgt der Standardfehler der Regression einer anderen Philosophie als das Bestimmtheitsmaß. Im Gegensatz zum Bestimmtheitsmaß, das den Erklärungsgehalt des Modells quantifiziert, gibt der Standardfehler der Regression eine Schätzung der Standardabweichung der unbeobachtbaren Effekte, die die Zielgröße beeinflussen (oder äquivalent eine Schätzung der Standardabweichung der unbeobachtbaren Effekte, die die Zielgröße beeinflussen, nachdem die Effekte der erklärenden Variablen herausgenommen wurden). Der Standardfehler der Regression wird meist mit bzw. notiert. Gelegentlich wird er auch mit notiert.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.