Isotopes of bromine
Bromine (35Br) has two stable isotopes, 79Br and 81Br, and 35 known radioisotopes, the most stable of which is 77Br, with a half-life of 57.036 hours.
| ||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Br) | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Like the radioactive isotopes of iodine, radioisotopes of bromine, collectively radiobromine, can be used to label biomolecules for nuclear medicine; for example, the positron emitters 75Br and 76Br can be used for positron emission tomography.[4][5] Radiobromine has the advantage that organobromides are more stable than analogous organoiodides, and that it is not uptaken by the thyroid like iodine.[6]
List of isotopes
Nuclide [n 1] |
Z | N | Isotopic mass (Da)[7] [n 2][n 3] |
Half-life[1] |
Decay mode[1] [n 4] |
Daughter isotope [n 5][n 6] |
Spin and parity[1] [n 7][n 8] |
Natural abundance (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy | Normal proportion[1] | Range of variation | |||||||||||||||||
68Br[8] | 35 | 33 | 67.95836(28)# | ~35 ns | p? | 67Se | 3+# | ||||||||||||
69Br | 35 | 34 | 68.950338(45) | <19 ns[8] | p | 68Se | (5/2−) | ||||||||||||
70Br | 35 | 35 | 69.944792(16) | 78.8(3) ms | β+ | 70Se | 0+ | ||||||||||||
β+, p? | 69As | ||||||||||||||||||
70mBr | 2292.3(8) keV | 2.16(5) s | β+ | 70Se | 9+ | ||||||||||||||
β+, p? | 69As | ||||||||||||||||||
71Br | 35 | 36 | 70.9393422(58) | 21.4(6) s | β+ | 71Se | (5/2)− | ||||||||||||
72Br | 35 | 37 | 71.9365946(11) | 78.6(24) s | β+ | 72Se | 1+ | ||||||||||||
72mBr | 100.76(15) keV | 10.6(3) s | IT | 72Br | (3-) | ||||||||||||||
β+? | 72Se | ||||||||||||||||||
73Br | 35 | 38 | 72.9316734(72) | 3.4(2) min | β+ | 73Se | 1/2− | ||||||||||||
74Br | 35 | 39 | 73.9299103(63) | 25.4(3) min | β+ | 74Se | (0−) | ||||||||||||
74mBr | 13.58(21) keV | 46(2) min | β+ | 74Se | 4+ | ||||||||||||||
75Br | 35 | 40 | 74.9258106(46) | 96.7(13) min | β+ (76%)[6] | 75Se | 3/2− | ||||||||||||
EC (24%) | 76Se | ||||||||||||||||||
76Br | 35 | 41 | 75.924542(10) | 16.2(2) h | β+ (57%)[6] | 76Se | 1− | ||||||||||||
EC (43%) | 76Se | ||||||||||||||||||
76mBr | 102.58(3) keV | 1.31(2) s | IT (>99.4%) | 76Br | (4)+ | ||||||||||||||
β+ (<0.6%) | 76Se | ||||||||||||||||||
77Br | 35 | 42 | 76.9213792(30) | 57.04(12) h | EC (99.3%)[9] | 77Se | 3/2− | ||||||||||||
β+ (0.7%) | 77Se | ||||||||||||||||||
77mBr | 105.86(8) keV | 4.28(10) min | IT | 77Br | 9/2+ | ||||||||||||||
78Br | 35 | 43 | 77.9211459(38) | 6.45(4) min | β+ (>99.99%) | 78Se | 1+ | ||||||||||||
β− (<0.01%) | 78Kr | ||||||||||||||||||
78mBr | 180.89(13) keV | 119.4(10) μs | IT | 78Br | (4+) | ||||||||||||||
79Br | 35 | 44 | 78.9183376(11) | Stable | 3/2− | 0.5065(9) | |||||||||||||
79mBr | 207.61(9) keV | 4.85(4) s | IT | 79Br | 9/2+ | ||||||||||||||
80Br | 35 | 45 | 79.9185298(11) | 17.68(2) min | β− (91.7%) | 80Kr | 1+ | ||||||||||||
β+ (8.3%) | 80Se | ||||||||||||||||||
80mBr | 85.843(4) keV | 4.4205(8) h | IT | 80Br | 5− | ||||||||||||||
81Br | 35 | 46 | 80.9162882(10) | Stable | 3/2− | 0.4935(9) | |||||||||||||
81mBr | 536.20(9) keV | 34.6(28) μs | IT | 81Br | 9/2+ | ||||||||||||||
82Br | 35 | 47 | 81.9168018(10) | 35.282(7) h | β− | 82Kr | 5− | ||||||||||||
82mBr | 45.9492(10) keV | 6.13(5) min | IT (97.6%) | 82Br | 2− | ||||||||||||||
β− (2.4%) | 82Kr | ||||||||||||||||||
83Br | 35 | 48 | 82.9151753(41) | 2.374(4) h | β− | 83Kr | 3/2− | ||||||||||||
83mBr | 3069.2(4) keV | 729(77) ns | IT | 83Br | (19/2−) | ||||||||||||||
84Br | 35 | 49 | 83.916496(28) | 31.76(8) min | β− | 84Kr | 2− | ||||||||||||
84m1 | 310(100) keV | 6.0(2) min | β− | 84Kr | (6)− | ||||||||||||||
84m2Br | 408.2(4) keV | <140 ns | IT | 84Br | 1+ | ||||||||||||||
85Br | 35 | 50 | 84.9156458(33) | 2.90(6) min | β− | 85Kr | 3/2− | ||||||||||||
86Br | 35 | 51 | 85.9188054(33) | 55.1(4) s | β− | 86Kr | (1−) | ||||||||||||
87Br | 35 | 52 | 86.9206740(34) | 55.68(12) s | β− (97.40%) | 87Kr | 5/2− | ||||||||||||
β−, n (2.60%) | 86Kr | ||||||||||||||||||
88Br | 35 | 53 | 87.9240833(34) | 16.34(8) s | β− (93.42%) | 88Kr | (1−) | ||||||||||||
β−, n (6.58%) | 87Kr | ||||||||||||||||||
88mBr | 270.17(11) keV | 5.51(4) μs | IT | 88Br | (4−) | ||||||||||||||
89Br | 35 | 54 | 88.9267046(35) | 4.357(22) s | β− (86.2%) | 89Kr | (3/2−, 5/2−) | ||||||||||||
β−, n (13.8%) | 88Kr | ||||||||||||||||||
90Br | 35 | 55 | 89.9312928(36) | 1.910(10) s | β− (74.7%) | 90Kr | |||||||||||||
β−, n (25.3%) | 89Kr | ||||||||||||||||||
91Br | 35 | 56 | 90.9343986(38) | 543(4) ms | β− (70.5%) | 91Kr | 5/2−# | ||||||||||||
β−, n (29.5%) | 90Kr | ||||||||||||||||||
92Br | 35 | 57 | 91.9396316(72) | 314(16) ms | β− (66.9%) | 92Kr | (2−) | ||||||||||||
β−, n (33.1%) | 91Kr | ||||||||||||||||||
β−, 2n? | 90Kr | ||||||||||||||||||
92m1Br | 662(1) keV | 88(8) ns | IT | 92Br | |||||||||||||||
92m2Br | 1138(1) keV | 85(10) ns | IT | 92Br | |||||||||||||||
93Br | 35 | 58 | 92.94322(46) | 152(8) ms | β−, n (64%) | 92Kr | 5/2−# | ||||||||||||
β− (36%) | 93Kr | ||||||||||||||||||
β−, 2n? | 91Kr | ||||||||||||||||||
94Br | 35 | 59 | 93.94885(22)# | 70(20) ms | β−, n (68%) | 93Kr | 2−# | ||||||||||||
β− (32%) | 94Kr | ||||||||||||||||||
β−, 2n? | 92Kr | ||||||||||||||||||
94mBr | 294.6(5) keV | 530(15) ns | IT | 94Br | |||||||||||||||
95Br | 35 | 60 | 94.95293(32)# | 80# ms [>300 ns] | β−? | 95Kr | 5/2−# | ||||||||||||
β−, n? | 94Kr | ||||||||||||||||||
β−, 2n? | 93Kr | ||||||||||||||||||
95mBr | 537.9(5) keV | 6.8(10) μs | IT | 95Br | |||||||||||||||
96Br | 35 | 61 | 95.95898(32)# | 20# ms [>300 ns] | β−? | 96Kr | |||||||||||||
β−, n? | 95Kr | ||||||||||||||||||
β−, 2n? | 94Kr | ||||||||||||||||||
96mBr | 311.5(5) keV | 3.0(9) μs | IT | 95Br | |||||||||||||||
97Br | 35 | 62 | 96.96350(43)# | 40# ms [>300 ns] | β−? | 97Kr | 5/2−# | ||||||||||||
β−, n? | 96Kr | ||||||||||||||||||
β−, 2n? | 95Kr | ||||||||||||||||||
98Br | 35 | 63 | 97.96989(43)# | 15# ms [>400 ns] | β−? | 98Kr | |||||||||||||
β−, n? | 97Kr | ||||||||||||||||||
β−, 2n? | 96Kr | ||||||||||||||||||
99Br[10] | 35 | 64 | |||||||||||||||||
100Br[10] | 35 | 65 | |||||||||||||||||
101Br[11] | 35 | 66 | |||||||||||||||||
This table header & footer: |
- mBr – Excited nuclear isomer.
- ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
-
Modes of decay:
IT: Isomeric transition n: Neutron emission p: Proton emission - Bold italics symbol as daughter – Daughter product is nearly stable.
- Bold symbol as daughter – Daughter product is stable.
- ( ) spin value – Indicates spin with weak assignment arguments.
- # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
Bromine-75
Bromine-75 has a half-life of 97 minutes.[12] This isotope undergoes β+ decay rather than electron capture about 76% of the time,[6] so it was used for diagnosis and positron emission tomography (PET) in the 1980s.[4] However, its decay product, selenium-75, produces secondary radioactivity with a longer half-life of 120.4 days.[6][4]
Bromine-76
Bromine-76 has a half-life of 16.2 hours.[12] While its decay is more energetic than 75Br and has lower yield of positrons (about 57% of decays),[6] bromine-76 has been preferred in PET applications since the 1980s because of its longer half-life and easier synthesis, and because its decay product, 76Se, is not radioactive.[5]
Bromine-77
Bromine-77 is the most stable radioisotope of bromine, with a half-life of 57 hours.[12] Although β+ decay is possible for this isotope, about 99.3% of decays are by electron capture.[9] Despite its complex emission spectrum, featuring strong gamma-ray emissions at 239, 297, 521, and 579 keV,[13] 77Br was used in SPECT imaging in the 1970s,[14] but except for longer-term tracing,[6] this is no longer considered practical due to the difficult collimator requirements and the proximity of the 521 keV line to the 511 keV annihilation radiation related to the β+ decay.[14] However, the auger electrons emitted during decay are well-suited for radiotherapy, and it can possibly be paired with the imaging-suited 76Br (produced as an impurity in common synthesis routes) for this application.[4][14]
References
- Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- "Standard Atomic Weights: Bromine". CIAAW. 2011.
- Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- Coenen, Heinz H.; Ermert, Johannes (January 2021). "Expanding PET-applications in life sciences with positron-emitters beyond fluorine-18". Nuclear Medicine and Biology. 92: 241–269. doi:10.1016/j.nucmedbio.2020.07.003.
- Welch, Michael J.; Mcelvany, Karen D. (1 October 1983). "Radionuclides of Bromine for Use in Biomedical Studies". ract. 34 (1–2): 41–46. doi:10.1524/ract.1983.34.12.41.
- Lambert, F.; Slegers, G.; Hermanne, α.; Mertens, J. (1 June 1994). "Production and Purification of 77 Br Suitable for Labeling Monoclonal Antibodies Used in Tumor Imaging". ract. 65 (4): 223–226. doi:10.1524/ract.1994.65.4.223.
- Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
- Wimmer, K.; et al. (2019). "Discovery of 68Br in secondary reactions of radioactive beams". Physics Letters B. 795: 266–270. arXiv:1906.04067. Bibcode:2019PhLB..795..266W. doi:10.1016/j.physletb.2019.06.014. S2CID 182953245.
- Kassis, A. I.; Adelstein, S. J.; Haydock, C.; Sastry, K. S. R.; McElvany, K. D.; Welch, M. J. (May 1982). "Lethality of Auger Electrons from the Decay of Bromine-77 in the DNA of Mammalian Cells" (PDF). Radiation Research. 90 (2): 362. doi:10.2307/3575714. ISSN 0033-7587.
- Shimizu, Y.; Kubo, T.; Sumikama, T.; Fukuda, N.; Takeda, H.; Suzuki, H.; Ahn, D. S.; Inabe, N.; Kusaka, K.; Ohtake, M.; Yanagisawa, Y.; Yoshida, K.; Ichikawa, Y.; Isobe, T.; Otsu, H.; Sato, H.; Sonoda, T.; Murai, D.; Iwasa, N.; Imai, N.; Hirayama, Y.; Jeong, S. C.; Kimura, S.; Miyatake, H.; Mukai, M.; Kim, D. G.; Kim, E.; Yagi, A. (8 April 2024). "Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam". Physical Review C. 109 (4). doi:10.1103/PhysRevC.109.044313.
- Sumikama, T.; et al. (2021). "Observation of new neutron-rich isotopes in the vicinity of Zr110". Physical Review C. 103 (1): 014614. Bibcode:2021PhRvC.103a4614S. doi:10.1103/PhysRevC.103.014614. hdl:10261/260248. S2CID 234019083.
- Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- Singh, Balraj; Nica, Ninel (May 2012). "Nuclear Data Sheets for A = 77". Nuclear Data Sheets. 113 (5): 1115–1314. doi:10.1016/j.nds.2012.05.001.
- Amjed, N.; Kaleem, N.; Wajid, A.M.; Naz, A.; Ahmad, I. (January 2024). "Evaluation of the cross section data for the low and medium energy cyclotron production of 77Br radionuclide". Radiation Physics and Chemistry. 214: 111286. doi:10.1016/j.radphyschem.2023.111286.
- Isotope masses from:
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- Isotopic compositions and standard atomic masses from:
- de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
- "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
- Half-life, spin, and isomer data selected from the following sources.
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory.
- Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.