Isotopes of vanadium

Naturally occurring vanadium (23V) is composed of one stable isotope 51V and one radioactive isotope 50V with a half-life of 2.71×1017 years. 24 artificial radioisotopes have been characterized (in the range of mass number between 40 and 65) with the most stable being 49V with a half-life of 330 days, and 48V with a half-life of 15.9735 days. All of the remaining radioactive isotopes have half-lives shorter than an hour, the majority of them below 10 seconds, the least stable being 42V with a half-life shorter than 55 nanoseconds, with all of the isotopes lighter than it, and none of the heavier, have unknown half-lives. In 4 isotopes, metastable excited states were found (including 2 metastable states for 60V), which adds up to 5 meta states.

Isotopes of vanadium (23V)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
48V synth 16 d β+ 48Ti
49V synth 330 d ε 49Ti
50V 0.25% 2.71×1017 y β+ 50Ti
51V 99.8% stable
Standard atomic weight Ar°(V)

The primary decay mode before the most abundant stable isotope 51V is electron capture. The next most common mode is beta decay. The primary decay products before 51V are element 22 (titanium) isotopes and the primary products after are element 24 (chromium) isotopes.

List of isotopes

Nuclide
[n 1]
Z N Isotopic mass (Da)
[n 2][n 3]
Half-life
[n 4][n 5]
Decay
mode

[n 6]
Daughter
isotope
[n 7]
Spin and
parity
[n 8][n 5]
Natural abundance (mole fraction) Note
Excitation energy[n 5] Normal proportion Range of variation
40V 23 17 40.01109(54)# p 39Ti 2−#
41V 23 18 40.99978(22)# p 40Ti 7/2−#
42V 23 19 41.99123(21)# <55 ns p 41Ti 2−#
43V 23 20 42.98065(25)# 80# ms β+ 43Ti 7/2−#
44V 23 21 43.97411(13) 111(7) ms β+ (>99.9%) 44Ti (2+)
β+, α (<.1%) 40Ca
44mV 270(100)# keV 150(3) ms β+ 44Ti (6+)
45V 23 22 44.965776(18) 547(6) ms β+ 45Ti 7/2−
46V 23 23 45.9602005(11) 422.50(11) ms β+ 46Ti 0+
46mV 801.46(10) keV 1.02(7) ms IT 46V 3+
47V 23 24 46.9549089(9) 32.6(3) min β+ 47Ti 3/2−
48V 23 25 47.9522537(27) 15.9735(25) d β+ 48Ti 4+
49V 23 26 48.9485161(12) 329(3) d EC 49Ti 7/2−
50V[n 9] 23 27 49.9471585(11) 2.71(13)×1017 y β+ 50Ti 6+ 0.00250(4) 0.002487–0.002502
β (<3%[3]) 50Cr
51V 23 28 50.9439595(11) Stable 7/2− 0.99750(4) 0.997498–0.997513 See V-51 nuclear magnetic resonance
52V 23 29 51.9447755(11) 3.743(5) min β 52Cr 3+
53V 23 30 52.944338(3) 1.60(4) min β 53Cr 7/2−
54V 23 31 53.946440(16) 49.8(5) s β 54Cr 3+
54mV 108(3) keV 900(500) ns (5+)
55V 23 32 54.94723(11) 6.54(15) s β 55Cr (7/2−)#
56V 23 33 55.95053(22) 216(4) ms β (>99.9%) 56Cr (1+)
β, n 55Cr
57V 23 34 56.95256(25) 0.35(1) s β (>99.9%) 57Cr (3/2−)
β, n (<.1%) 56Cr
58V 23 35 57.95683(27) 191(8) ms β (>99.9%) 58Cr 3+#
β, n (<.1%) 57Cr
59V 23 36 58.96021(33) 75(7) ms β (>99.9%) 59Cr 7/2−#
β, n (<.1%) 58Cr
60V 23 37 59.96503(51) 122(18) ms β (>99.9%) 60Cr 3+#
β, n (<.1%) 59Cr
60m1V 0(150)# keV 40(15) ms 1+#
60m2V 101(1) keV >400 ns
61V 23 38 60.96848(43)# 47.0(12) ms β 61Cr 7/2−#
62V 23 39 61.97378(54)# 33.5(20) ms β 62Cr 3+#
63V 23 40 62.97755(64)# 17(3) ms β 63Cr (7/2−)#
64V 23 41 63.98347(75)# 10# ms [>300 ns]
65V 23 42 64.98792(86)# 10# ms 5/2−#
66V[4] 23 43 65.99324(54)# 10# ms
(>620 ns)
β?[n 10] 66Cr
β, n?[n 10] 65Cr
β, 2n?[n 10] 64Cr
67V[5] 23 44 66.99813(64)# 8# ms
(>620 ns)
β?[n 10] 67Cr 5/2−#
β, n?[n 10] 66Cr
β, 2n?[n 10] 65Cr
This table header & footer:
  1. mV  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Bold half-life  nearly stable, half-life longer than age of universe.
  5. #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. Modes of decay:
    EC:Electron capture
    IT:Isomeric transition
    p:Proton emission
  7. Bold symbol as daughter  Daughter product is stable.
  8. () spin value  Indicates spin with weak assignment arguments.
  9. Primordial radionuclide
  10. Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.

References

  1. "Standard Atomic Weights: Vanadium". CIAAW. 1977.
  2. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  3. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  4. Tarasov, O. B.; et al. (April 2009). "Evidence for a Change in the Nuclear Mass Surface with the Discovery of the Most Neutron-Rich Nuclei with 17 ≤ Z ≤ 25". Physical Review Letters. 102 (14): 142501. arXiv:0903.1975. Bibcode:2009PhRvL.102n2501T. doi:10.1103/PhysRevLett.102.142501. PMID 19392430. S2CID 42329617. Retrieved 3 January 2023.
  5. Tarasov, O. B.; et al. (May 2013). "Production cross sections from 82 Se fragmentation as indications of shell effects in neutron-rich isotopes close to the drip-line". Physical Review C. 87 (5): 054612. arXiv:1303.7164. Bibcode:2013PhRvC..87e4612T. doi:10.1103/PhysRevC.87.054612.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.