Isotopes of tin
Tin (50Sn) is the element with the greatest number of stable isotopes (ten; three of them are potentially radioactive but have not been observed to decay). This is probably related to the fact that 50 is a "magic number" of protons. In addition, twenty-nine unstable tin isotopes are known, including tin-100 (100Sn) (discovered in 1994)[4] and tin-132 (132Sn), which are both "doubly magic". The longest-lived tin radioisotope is tin-126 (126Sn), with a half-life of 230,000 years. The other 28 radioisotopes have half-lives of less than a year.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Sn) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
List of isotopes
Nuclide [n 1] |
Z | N | Isotopic mass (Da)[5] [n 2][n 3] |
Half-life [n 4] |
Decay mode [n 5] |
Daughter isotope [n 6] |
Spin and parity [n 7][n 4] |
Natural abundance (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy[n 4] | Normal proportion | Range of variation | |||||||||||||||||
99Sn[n 8] | 50 | 49 | 98.94850(63)# | 24(4) ms | β+ (95%) | 99In | 9/2+# | ||||||||||||
β+, p (5%) | 98Cd | ||||||||||||||||||
100Sn | 50 | 50 | 99.93865(26) | 1.18(8) s | β+ (>83%) | 100In | 0+ | ||||||||||||
β+, p (<17%) | 99Cd | ||||||||||||||||||
101Sn | 50 | 51 | 100.93526(32) | 2.22(5) s | β+ | 101In | (7/2+) | ||||||||||||
β+, p? | 100Cd | ||||||||||||||||||
102Sn | 50 | 52 | 101.93029(11) | 3.8(2) s | β+ | 102In | 0+ | ||||||||||||
102mSn | 2017(2) keV | 367(8) ns | IT | 102Sn | (6+) | ||||||||||||||
103Sn | 50 | 53 | 102.92797(11)# | 7.0(2) s | β+ (98.8%) | 103In | 5/2+# | ||||||||||||
β+, p (1.2%) | 102Cd | ||||||||||||||||||
104Sn | 50 | 54 | 103.923105(6) | 20.8(5) s | β+ | 104In | 0+ | ||||||||||||
105Sn | 50 | 55 | 104.921268(4) | 32.7(5) s | β+ | 105In | (5/2+) | ||||||||||||
β+, p (0.011%) | 104Cd | ||||||||||||||||||
106Sn | 50 | 56 | 105.916957(5) | 1.92(8) min | β+ | 106In | 0+ | ||||||||||||
107Sn | 50 | 57 | 106.915714(6) | 2.90(5) min | β+ | 107In | (5/2+) | ||||||||||||
108Sn | 50 | 58 | 107.911894(6) | 10.30(8) min | β+ | 108In | 0+ | ||||||||||||
109Sn | 50 | 59 | 108.911293(9) | 18.1(2) min | β+ | 109In | 5/2+ | ||||||||||||
110Sn | 50 | 60 | 109.907845(15) | 4.154(4) h | EC | 110In | 0+ | ||||||||||||
111Sn | 50 | 61 | 110.907741(6) | 35.3(6) min | β+ | 111In | 7/2+ | ||||||||||||
111mSn | 254.71(4) keV | 12.5(10) μs | IT | 111Sn | 1/2+ | ||||||||||||||
112Sn | 50 | 62 | 111.9048249(3) | Observationally Stable[n 9] | 0+ | 0.0097(1) | |||||||||||||
113Sn | 50 | 63 | 112.9051759(17) | 115.08(4) d | β+ | 113In | 1/2+ | ||||||||||||
113mSn | 77.389(19) keV | 21.4(4) min | IT (91.1%) | 113Sn | 7/2+ | ||||||||||||||
β+ (8.9%) | 113In | ||||||||||||||||||
114Sn | 50 | 64 | 113.90278013(3) | Stable | 0+ | 0.0066(1) | |||||||||||||
114mSn | 3087.37(7) keV | 733(14) ns | IT | 114Sn | 7− | ||||||||||||||
115Sn | 50 | 65 | 114.903344696(16) | Stable | 1/2+ | 0.0034(1) | |||||||||||||
115m1Sn | 612.81(4) keV | 3.26(8) μs | 7/2+ | ||||||||||||||||
115m2Sn | 713.64(12) keV | 159(1) μs | 11/2− | ||||||||||||||||
116Sn | 50 | 66 | 115.90174283(10) | Stable | 0+ | 0.1454(9) | |||||||||||||
117Sn | 50 | 67 | 116.9029540(5) | Stable | 1/2+ | 0.0768(7) | |||||||||||||
117m1Sn | 314.58(4) keV | 13.76(4) d | IT | 117Sn | 11/2− | ||||||||||||||
117m2Sn | 2406.4(4) keV | 1.75(7) μs | (19/2+) | ||||||||||||||||
118Sn | 50 | 68 | 117.9016066(5) | Stable | 0+ | 0.2422(9) | |||||||||||||
119Sn | 50 | 69 | 118.9033113(8) | Stable | 1/2+ | 0.0859(4) | |||||||||||||
119m1Sn | 89.531(13) keV | 293.1(7) d | IT | 119Sn | 11/2− | ||||||||||||||
119m2Sn | 2127.0(10) keV | 9.6(12) μs | (19/2+) | ||||||||||||||||
120Sn | 50 | 70 | 119.9022026(10) | Stable | 0+ | 0.3258(9) | |||||||||||||
120m1Sn | 2481.63(6) keV | 11.8(5) μs | (7−) | ||||||||||||||||
120m2Sn | 2902.22(22) keV | 6.26(11) μs | (10+)# | ||||||||||||||||
121Sn[n 10] | 50 | 71 | 120.9042435(11) | 27.03(4) h | β− | 121Sb | 3/2+ | ||||||||||||
121m1Sn | 6.30(6) keV | 43.9(5) y | IT (77.6%) | 121Sn | 11/2− | ||||||||||||||
β− (22.4%) | 121Sb | ||||||||||||||||||
121m2Sn | 1998.8(9) keV | 5.3(5) μs | (19/2+)# | ||||||||||||||||
121m3Sn | 2834.6(18) keV | 0.167(25) μs | (27/2−) | ||||||||||||||||
122Sn[n 10] | 50 | 72 | 121.9034455(26) | Observationally Stable[n 11] | 0+ | 0.0463(3) | |||||||||||||
123Sn[n 10] | 50 | 73 | 122.9057271(27) | 129.2(4) d | β− | 123Sb | 11/2− | ||||||||||||
123m1Sn | 24.6(4) keV | 40.06(1) min | β− | 123Sb | 3/2+ | ||||||||||||||
123m2Sn | 1945.0(10) keV | 7.4(26) μs | (19/2+) | ||||||||||||||||
123m3Sn | 2153.0(12) keV | 6 μs | (23/2+) | ||||||||||||||||
123m4Sn | 2713.0(14) keV | 34 μs | (27/2−) | ||||||||||||||||
124Sn[n 10] | 50 | 74 | 123.9052796(14) | Observationally Stable[n 12] | 0+ | 0.0579(5) | |||||||||||||
124m1Sn | 2204.622(23) keV | 0.27(6) μs | 5- | ||||||||||||||||
124m2Sn | 2325.01(4) keV | 3.1(5) μs | 7− | ||||||||||||||||
124m3Sn | 2656.6(5) keV | 45(5) μs | (10+)# | ||||||||||||||||
125Sn[n 10] | 50 | 75 | 124.9077894(14) | 9.64(3) d | β− | 125Sb | 11/2− | ||||||||||||
125mSn | 27.50(14) keV | 9.52(5) min | β− | 125Sb | 3/2+ | ||||||||||||||
126Sn[n 13] | 50 | 76 | 125.907659(11) | 2.30(14)×105 y | β− (66.5%) | 126m2Sb | 0+ | < 10−14[6] | |||||||||||
β− (33.5%) | 126m1Sb | ||||||||||||||||||
126m1Sn | 2218.99(8) keV | 6.6(14) μs | 7− | ||||||||||||||||
126m2Sn | 2564.5(5) keV | 7.7(5) μs | (10+)# | ||||||||||||||||
127Sn | 50 | 77 | 126.910392(10) | 2.10(4) h | β− | 127Sb | (11/2−) | ||||||||||||
127mSn | 4.7(3) keV | 4.13(3) min | β− | 127Sb | (3/2+) | ||||||||||||||
128Sn | 50 | 78 | 127.910508(19) | 59.07(14) min | β− | 128Sb | 0+ | ||||||||||||
128mSn | 2091.50(11) keV | 6.5(5) s | IT | 128Sn | (7−) | ||||||||||||||
129Sn | 50 | 79 | 128.913482(19) | 2.23(4) min | β− | 129Sb | (3/2+)# | ||||||||||||
129mSn | 35.2(3) keV | 6.9(1) min | β− (99.99%) | 129Sb | (11/2−)# | ||||||||||||||
IT (.002%) | 129Sn | ||||||||||||||||||
130Sn | 50 | 80 | 129.9139745(20) | 3.72(7) min | β− | 130Sb | 0+ | ||||||||||||
130m1Sn | 1946.88(10) keV | 1.7(1) min | β− | 130Sb | (7−)# | ||||||||||||||
130m2Sn | 2434.79(12) keV | 1.61(15) μs | (10+) | ||||||||||||||||
131Sn | 50 | 81 | 130.917053(4) | 56.0(5) s | β− | 131Sb | (3/2+) | ||||||||||||
131m1Sn | 80(30)# keV | 58.4(5) s | β− (99.99%) | 131Sb | (11/2−) | ||||||||||||||
IT (.0004%) | 131Sn | ||||||||||||||||||
131m2Sn | 4846.7(9) keV | 300(20) ns | (19/2− to 23/2−) | ||||||||||||||||
132Sn | 50 | 82 | 131.9178239(21) | 39.7(8) s | β− | 132Sb | 0+ | ||||||||||||
133Sn | 50 | 83 | 132.9239138(20) | 1.45(3) s | β− (99.97%) | 133Sb | (7/2−)# | ||||||||||||
β−, n (.0294%) | 132Sb | ||||||||||||||||||
134Sn | 50 | 84 | 133.928680(3) | 1.050(11) s | β− (83%) | 134Sb | 0+ | ||||||||||||
β−, n (17%) | 133Sb | ||||||||||||||||||
135Sn | 50 | 85 | 134.934909(3) | 530(20) ms | β− | 135Sb | (7/2−) | ||||||||||||
β−, n | 134Sb | ||||||||||||||||||
136Sn | 50 | 86 | 135.93970(22)# | 0.25(3) s | β− | 136Sb | 0+ | ||||||||||||
β−, n | 135Sb | ||||||||||||||||||
137Sn | 50 | 87 | 136.94616(32)# | 190(60) ms | β− | 137Sb | 5/2−# | ||||||||||||
138Sn | 50 | 88 | 137.95114(43)# | 140 ms +30-20 | β− | 138Sb | |||||||||||||
138mSn | 1344(2) keV | 210(45) ns | |||||||||||||||||
139Sn | 50 | 89 | 138.95780(43)# | 130 ms | β− | 139Sb | |||||||||||||
140Sn | 50 | 90 | 139.96297(32)# | 50# ms [>550 ns] | β−? | 140Sb | 0+ | ||||||||||||
β−, n? | 139Sb | ||||||||||||||||||
β−, 2n? | 138Sb | ||||||||||||||||||
This table header & footer: |
- mSn – Excited nuclear isomer.
- ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
-
Modes of decay:
EC: Electron capture IT: Isomeric transition n: Neutron emission p: Proton emission - Bold symbol as daughter – Daughter product is stable.
- ( ) spin value – Indicates spin with weak assignment arguments.
- Heaviest known nuclide with more protons than neutrons
- Believed to decay by β+β+ to 112Cd
- Fission product
- Believed to undergo β−β− decay to 122Te
- Believed to undergo β−β− decay to 124Te with a half-life over 100×1015 years
- Long-lived fission product
Tin-117m
Tin-117m is a radioisotope of tin. One of its uses is in a particulate suspension to treat canine synovitis (radiosynoviorthesis).[7]
Tin-121m
Tin-121m (121mSn) is a radioisotope and nuclear isomer of tin with a half-life of 43.9 years.
In a normal thermal reactor, it has a very low fission product yield; thus, this isotope is not a significant contributor to nuclear waste. Fast fission or fission of some heavier actinides will produce tin-121 at higher yields. For example, its yield from uranium-235 is 0.0007% per thermal fission and 0.002% per fast fission.[8]
Tin-126
Thermal | Fast | 14 MeV | |
---|---|---|---|
232Th | not fissile | 0.0481 ± 0.0077 | 0.87 ± 0.20 |
233U | 0.224 ± 0.018 | 0.278 ± 0.022 | 1.92 ± 0.31 |
235U | 0.056 ± 0.004 | 0.0137 ± 0.001 | 1.70 ± 0.14 |
238U | not fissile | 0.054 ± 0.004 | 1.31 ± 0.21 |
239Pu | 0.199 ± 0.016 | 0.26 ± 0.02 | 2.02 ± 0.22 |
241Pu | 0.082 ± 0.019 | 0.22 ± 0.03 | ? |
Tin-126 is a radioisotope of tin and one of the only seven long-lived fission products of uranium and plutonium. While tin-126's half-life of 230,000 years translates to a low specific activity of gamma radiation, its short-lived decay products, two isomers of antimony-126, emit 17 and 40 keV gamma radiation and a 3.67 MeV beta particle on their way to stable tellurium-126, making external exposure to tin-126 a potential concern.
Tin-126 is in the middle of the mass range for fission products. Thermal reactors, which make up almost all current nuclear power plants, produce it at a very low yield (0.056% for 235U), since slow neutrons almost always fission 235U or 239Pu into unequal halves. Fast fission in a fast reactor or nuclear weapon, or fission of some heavy minor actinides such as californium, will produce it at higher yields.
References
- Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- "Standard Atomic Weights: Tin". CIAAW. 1983.
- Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- K. Sümmerer; R. Schneider; T Faestermann; J. Friese; H. Geissel; R. Gernhäuser; H. Gilg; F. Heine; J. Homolka; P. Kienle; H. J. Körner; G. Münzenberg; J. Reinhold; K. Zeitelhack (April 1997). "Identification and decay spectroscopy of 100Sn at the GSI projectile fragment separator FRS". Nuclear Physics A. 616 (1–2): 341–345. Bibcode:1997NuPhA.616..341S. doi:10.1016/S0375-9474(97)00106-1.
- Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
- H.-T. Shen; et al. "Research on measurement of 126Sn by AMS" (PDF). accelconf.web.cern.ch.
- "https://www.nrc.gov/site-help/search.html?site=AllSites&searchtext=synovetin" (PDF).
{{cite web}}
: External link in
(help)|title=
- M. B. Chadwick et al, "Evaluated Nuclear Data File (ENDF) : ENDF/B-VII.1: Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields, and Decay Data", Nucl. Data Sheets 112(2011)2887. (accessed at https://www-nds.iaea.org/exfor/endf.htm)
- Isotope masses from:
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- Isotopic compositions and standard atomic masses from:
- de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
- "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
- Half-life, spin, and isomer data selected from:
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory.
- Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.