Ein Körpermodell ist ein physisches Modell eines geometrischen Körpers. Während ein geometrischer Körper die idealisierte, mathematische Form eines realen Gegenstands beschreibt, stellt umgekehrt ein Körpermodell eine physische Realisierung („Repräsentant“) des mathematischen Begriffs dar. Körpermodelle zielen dabei auf die haptische Erfahrung des mathematischen Körpers, um das räumliche Vorstellungsvermögen zu entwickeln. Demgegenüber fokussieren Software-Anwendungen für dynamische Raumgeometrie, die heute in Lehre vermehrt anstelle physischer Körpermodelle eingesetzt werden, allein auf den visuellen Sinneskanal (dafür erlauben sie es allerdings auch, die Proportionen des Körpers interaktiv und dynamisch zu verändern und Berechnungen an den virtuell konstruierten Körpern vorzunehmen).

Zweck von Körpermodellen

Körpermodelle werden genutzt, um das räumliche Vorstellungsvermögen zu schulen und insbesondere

  • Begriffe wie Ecke, Kante, Fläche zu veranschaulichen;
  • die Bestimmung der Anzahl der Ecken, Anzahl der Kanten, eines Raumwinkels oder Eckengrads visuell zu unterstützen sowie
  • die räumliche Lage von Raumdiagonale oder Körperhöhe besser zu verstehen oder die Geometrie von Schnittflächen zu untersuchen.

Verschiedene Arten von Körpermodellen

Es gibt Vollkörper, Kantenmodelle oder Flächenmodelle.

Vollkörpermodelle

Mathematische Institute an Hochschulen haben zu Lehrzwecken oftmals eine umfangreiche Sammlung an Vollkörpermodellen, die nicht selten durch Mitarbeiter oder Angestellte gefertigt wurden. Als Material finden u. a. Holz, Metall, Glas, Karton und Papier Verwendung, später auch Kunststoff.

Für zahlreiche Polyeder gibt es überraschend stabile Flechtmodelle; sie werden ohne Verwendung von Klebstoff aus (meist farbigen) Papierstreifen durch Falten und Flechten hergestellt.

Mit Hilfe von Rapid Prototyping Technologie und 3D-Druckern kann man heute auch komplexe Vollkörpermodelle in wenigen Stunden oder Tagen automatisiert selbst herstellen.

Kantenmodelle

Kantenmodelle kann man leicht selbst herstellen, z. B. mit Hilfe von Schaschlik-Spießen (oder Zahnstochern, Trinkhalmen, Pfeifenputzern, Metalldraht, …) und Knete bzw. Wachs – oder auch mittels Klickies, Polydron oder mit Zometool. Für die Lehre wurden auch Kantenmodelle aus farbig lackierten Metallstäben vertrieben.

Kantenmodelle erleichtern nicht nur die Bestimmung der Anzahl der Kanten des Körpers sowie entsprechender Winkel, sie dienen auch dazu, das Zeichnen des Körpers, insbesondere des Schrägbilds, vorzubereiten.

Flächenmodelle

Besonders einfach lässt sich ein Modell aus dem Körpernetz des Körpers falten. Zu diesem Zweck wird das Körpernetz um Schlitze und Laschen beziehungsweise um Klebekanten ergänzt.

Sogenannte Pop-Up-Modelle sind auf eine Weise konstruiert, dass sie sich auf- und wieder zusammenklappen bzw. -ziehen lassen. Ein aus dem Körpernetz gefaltetes Körpermodell dient insbesondere dazu, die Berechnung des Flächeninhalts der Oberfläche des Körpers zu veranschaulichen.

Fadenmodelle

Bei Regelflächen können Fadenmodelle verwendet werden, um die (Ober-)Fläche zu veranschaulichen.

Siehe auch

Literatur

  • H. M. Cundy and A.P. Rollett: Mathematical Models. Oxford University Press, London, 1952 (3. Auflage bei Tarquin Publications, 1981)
  • Birgit Brandl: Herstellen von Modellen für den Raumgeometrieunterricht den Raumgeometrieunterricht. Workshop auf dem 12. Bayreuther Workshop auf dem 12. Bayreuther Mathematikwochenende, 15. Oktober 2010, Universität Augsburg
  • Gustav Adolf Lörcher, Horst Rümmele: Schnellmodelle. In: Der Mathematikunterricht (3) 45, 1999, S. 19–31
  • Heinrich Wölpert: Materialien zur Entwicklung der Raumvorstellung im Mathematikunterricht. In: Der Mathematikunterricht 6, 1983, S. 7–42

Einzelnachweise

  1. Geometrie: Körper, in: Duden Mathematik 4, Kommentare zu den Kapiteln, S. 53
  2. Sicheres Wissen und Können, Geometrie im Raum, Sekundarstufe I (Memento vom 4. April 2015 im Internet Archive). Landesinstitut für Schule und Ausbildung Mecklenburg-Vorpommern, Schwerin, 2005
  3. UNIVERSITÄTSSAMMLUNGEN IN DEUTSCHLAND
  4. Polyeder aus Flechtstreifen (Hans-Bernhard Meyer)
  5. Körper flechten (Mathematische Basteleien, Jürgen Köller)
  6. Modular Origami Diagrams (Origami Resource Center)
  7. George W. Hart's Rapid Prototyping Web Page
  8. George W. Hart: Creating a Mathematical Museum on Your Desk. Mathematical Intelligencer 27 (4), 2005
  9. Rüdiger Vernay: Mit Klickies arbeiten – Anregungen, Aufgabenkarten und Kommentare (Memento vom 29. April 2014 im Internet Archive). MUED, Nottuln-Appelhülsen, 2008
  10. Polydron – Mathematikum, Gießen
  11. George W. Hart und Henri Picciotto: Zome Geometry – Hands-on Learning with Zome Models. Key Curriculum Press, 2001
  12. Hans J. Schmidt: Prof. Dr. Brian Teaser's Körperberechnung (mit Bastelanleitung für Pop-Up-Modelle). Aulis Verlag, 3. unveränderte Auflage 2008
  13. Bastelbögen (Netze mit Klebekanten) für Platonische Körper und Archimedische Körper (Reimund Albers, Universität Bremen)
  14. Walser, Hans: Dynamische Raumgeometrie: Pop-up-Polyeder und Schraub-Polyeder. In: Der Mathematikunterricht 3, 1999, S. 64–74
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.