Künstliche Intelligenz (KI), auch artifizielle Intelligenz (AI), englisch artificial intelligence, ist ein Teilgebiet der Informatik, es umfasst alle Anstrengungen, deren Ziel es ist, Maschinen intelligent zu machen. Dabei wird Intelligenz verstanden als die Eigenschaft, die ein Wesen befähigt, angemessen und vorausschauend in seiner Umgebung zu agieren; dazu gehört die Fähigkeit, Sinneseindrücke wahrzunehmen und darauf zu reagieren, Informationen aufzunehmen, zu verarbeiten und als Wissen zu speichern, Sprache zu verstehen und zu erzeugen, Probleme zu lösen und Ziele zu erreichen.

Seit der Begriffsprägung im Jahre 1955 hat sich eine Reihe relativ selbständiger Teildisziplinen herausgebildet:

Zur Forschungsrichtung künstliches Leben bestehen enge Beziehungen. Das Fernziel der KI ist die als starke KI oder künstliche allgemeine Intelligenz bezeichnete Fähigkeit eines intelligenten Agenten, jede intellektuelle Aufgabe zu verstehen oder zu erlernen, die der Mensch oder ein anderes Lebewesen bewältigen kann.

Praktische Erfolge der KI werden schnell in die Anwendungsbereiche integriert und zählen dann nicht mehr zur KI. Wegen dieses sog. „KI-Effekts“ scheint die KI-Forschung sich nur mit harten Nüssen abzumühen, die sie nicht knacken kann, was auch Teslers „Theorem“ zum Ausdruck bringt: „Intelligenz ist das, was Maschinen noch nicht gemacht haben“.

Allgemeines

Im Verständnis des Begriffs künstliche Intelligenz (KI) spiegelt sich die aus der Aufklärung stammende materialistische Vorstellung des „Menschen als Maschine“ wider. « L' Homme-Machine », so lautet der Titel des einschlägigen „blasphemischen Werkes“ des Radikalaufklärers La Mettrie aus dem Jahre 1748. Die sogenannte starke KI setzt sich genau dies zum Ziel. Sie möchte eine Intelligenz erschaffen, die das menschliche Denken mechanisch nachbildet, Sie möchte eine Maschine konstruieren, die intelligent reagiert, die sich wie ein Mensch verhält.

Die Ziele der starken KI sind nach Jahrzehnten der Forschung weiterhin visionär.

Begriffsherkunft und Definitionsversuche

Der Begriff künstliche Intelligenz (im englischen Original artificial intelligence) wurde 1955 von dem US-amerikanischen Informatiker John McCarthy im Rahmen eines Förderantrags für ein Forschungsprojekt geprägt.

Es existieren zahlreiche Definitionen für den Begriff der KI. Je nach Sichtweise wird die künstliche Intelligenz in Industrie, Forschung und Politik entweder über die zu erzielenden Anwendungen oder den Blick auf die wissenschaftlichen Grundlagen definiert:

„Künstliche Intelligenz ist die Eigenschaft eines IT-Systems, »menschenähnliche«, intelligente Verhaltensweisen zu zeigen.“

Bitkom e. V. und Deutsches Forschungszentrum für künstliche Intelligenz

„Die künstliche Intelligenz [...] ist ein Teilgebiet der Informatik, welches sich mit der Erforschung von Mechanismen des intelligenten menschlichen Verhaltens befaßt [...].“

Spektrum der Wissenschaft, Lexikon der Neurowissenschaften

„Unter künstlicher Intelligenz (KI) verstehen wir Technologien, die menschliche Fähigkeiten im Sehen, Hören, Analysieren, Entscheiden und Handeln ergänzen und stärken.“

Microsoft Corp.

„Künstliche Intelligenz ist die Fähigkeit einer Maschine, menschliche Fähigkeiten wie logisches Denken, Lernen, Planen und Kreativität zu imitieren.“

Europäisches Parlament (Webseite)

Starke und schwache KI

Starke KI wären Computersysteme, die auf Augenhöhe mit Menschen die Arbeit zur Erledigung schwieriger Aufgaben übernehmen können. Demgegenüber geht es bei schwacher KI darum, konkrete Anwendungsprobleme zu meistern. Das menschliche Denken und technische Anwendungen sollen hier in Einzelbereichen unterstützt werden. Die Fähigkeit zu lernen ist eine Hauptanforderung an KI-Systeme und muss ein integraler Bestandteil sein, der nicht erst nachträglich hinzugefügt werden darf. Ein zweites Hauptkriterium ist die Fähigkeit eines KI-Systems, mit Unsicherheit und probabilistischen Informationen umzugehen. Insbesondere sind solche Anwendungen von Interesse, zu deren Lösung nach allgemeinem Verständnis eine Form von „Intelligenz“ notwendig zu sein scheint. Letztlich geht es der schwachen KI somit um die Simulation intelligenten Verhaltens mit Mitteln der Mathematik und der Informatik, es geht ihr nicht um Schaffung von Bewusstsein oder um ein tieferes Verständnis von Intelligenz. Während die Schaffung starker KI an ihrer philosophischen Fragestellung bis heute scheiterte, sind auf der Seite der schwachen KI in den letzten Jahren bedeutende Fortschritte erzielt worden.

Ein starkes KI-System muss nicht viele Gemeinsamkeiten mit dem Menschen haben. Es wird wahrscheinlich eine andersartige kognitive Architektur aufweisen und in seinen Entwicklungsstadien ebenfalls nicht mit den evolutionären kognitiven Stadien des menschlichen Denkens vergleichbar sein (Evolution des Denkens). Vor allem ist nicht anzunehmen, dass eine künstliche Intelligenz Gefühle wie Liebe, Hass, Angst oder Freude besitzt.

Forschungsgebiete

Neben den Forschungsergebnissen der Kerninformatik selbst sind in die Erforschung der KI Ergebnisse der Psychologie, Neurologie und Neurowissenschaften, der Mathematik und Logik, Kommunikationswissenschaft, Philosophie und Linguistik eingeflossen. Umgekehrt nahm die Erforschung der KI auch ihrerseits Einfluss auf andere Gebiete, vor allem auf die Neurowissenschaften. Dies zeigt sich in der Ausbildung des Bereichs der Neuroinformatik, der der biologieorientierten Informatik zugeordnet ist, sowie der Computational Neuroscience.

Bei künstlichen neuronalen Netzen handelt es sich um Techniken, die ab Mitte des 20. Jahrhunderts entwickelt wurden und auf der Neurophysiologie aufbauen.

KI stellt somit kein geschlossenes Forschungsgebiet dar. Vielmehr werden Techniken aus verschiedenen Disziplinen verwendet, ohne dass diese eine Verbindung miteinander haben müssen.

Eine wichtige Tagung ist die International Joint Conference on Artificial Intelligence (IJCAI), die seit 1969 stattfindet.

Geschichte

Teilgebiete

Wissensbasierte Systeme

Wissensbasierte Systeme modellieren eine Form rationaler Intelligenz für sogenannte Expertensysteme. Diese sind in der Lage, auf eine Frage des Anwenders auf Grundlage formalisierten Fachwissens und daraus gezogener logischer Schlüsse Antworten zu liefern. Beispielhafte Anwendungen finden sich in der Diagnose von Krankheiten oder der Suche und Beseitigung von Fehlern in technischen Systemen.

Beispiele für wissensbasierte Systeme sind Cyc und Watson.

Musteranalyse und Mustererkennung

Visuelle Intelligenz ermöglicht es, Bilder beziehungsweise Formen zu erkennen und zu analysieren. Als Anwendungsbeispiele seien hier Handschrifterkennung, Identifikation von Personen durch Gesichtserkennung, Abgleich der Fingerabdrücke oder der Iris, industrielle Qualitätskontrolle und Fertigungsautomation (letzteres in Kombination mit Erkenntnissen der Robotik) genannt.

Mittels sprachlicher Intelligenz ist es beispielsweise möglich, einen geschriebenen Text in gesprochene Sprache umzuwandeln (Sprachsynthese) und umgekehrt einen gesprochenen Text zu verschriftlichen (Spracherkennung). Diese automatische Sprachverarbeitung lässt sich ausbauen, so dass etwa durch latente semantische Analyse (kurz LSI) Wörtern und Texten Bedeutung beigemessen werden kann.

Beispiele für Systeme zur Mustererkennung sind Google Brain und Microsoft Adam.

Mustervorhersage

Die Mustervorhersage ist eine Erweiterung der Mustererkennung. Sie stellt etwa die Grundlage des von Jeff Hawkins definierten hierarchischen Temporalspeichers dar.

“Prediction is not just one of the things your brain does. It is the primary function of the neocortex, and the foundation of intelligence.”

Vorhersage ist nicht einfach nur eines der Dinge, die dein Gehirn tut. Sie ist die Hauptfunktion des Neocortex und das Fundament der Intelligenz.“

Jeff Hawkins: On Intelligence

Solche Systeme bieten den Vorteil, dass z. B. nicht nur ein bestimmtes Objekt in einem einzelnen Bild erkannt wird (Mustererkennung), sondern auch anhand einer Bildserie vorhergesagt werden kann, wo sich das Objekt als nächstes aufhalten wird.

Robotik

Die Robotik beschäftigt sich mit manipulativer Intelligenz. Mit Hilfe von Robotern können unter anderem gefährliche Tätigkeiten wie etwa die Minensuche oder auch immer gleiche Manipulationen, wie sie z. B. beim Schweißen oder Lackieren auftreten können, automatisiert werden.

Der Grundgedanke ist es, Systeme zu schaffen, die intelligente Verhaltensweisen von Lebewesen nachvollziehen können. Beispiele für derartige Roboter sind ASIMO und Atlas.

Künstliches Leben

KI überlappt sich mit der Disziplin künstliches Leben (Artificial life, AL), wird als übergeordnete oder auch als eine Subdisziplin gesehen. AL muss deren Erkenntnisse integrieren, da Kognition eine Kerneigenschaft von natürlichem Leben ist, nicht nur des Menschen.

Methoden

Die Methoden der KI lassen sich grob in zwei Dimensionen einordnen: symbolische vs. neuronale KI und Simulationsmethode vs. phänomenologische Methode. Die Zusammenhänge veranschaulicht die folgende Grafik:

Die Neuronale KI verfolgt einen Bottom-up-Ansatz und möchte das menschliche Gehirn möglichst präzise nachbilden. Die symbolische KI verfolgt umgekehrt einen Top-down-Ansatz und nähert sich den Intelligenzleistungen von einer begrifflichen Ebene her. Die Simulationsmethode orientiert sich so nah wie möglich an den tatsächlichen kognitiven Prozessen des Menschen. Dagegen kommt es dem phänomenologischen Ansatz nur auf das Ergebnis an.

Viele ältere Methoden, die in der KI entwickelt wurden, basieren auf heuristischen Lösungsverfahren. In jüngerer Zeit spielen mathematisch fundierte Ansätze aus der Statistik, der mathematischen Programmierung und der Approximationstheorie eine bedeutende Rolle.

Die konkreten Techniken der KI lassen sich grob in Gruppen einteilen:

Suchen

Die KI beschäftigt sich häufig mit Problemen, bei denen nach bestimmten Lösungen gesucht wird. Verschiedene Suchalgorithmen werden dabei eingesetzt. Ein Paradebeispiel für die Suche ist der Vorgang der Wegfindung, der in vielen Computerspielen eine zentrale Rolle einnimmt und auf Suchalgorithmen wie zum Beispiel dem A*-Algorithmus basiert.

Planen

Neben dem Suchen von Lösungen stellt das Planen einen wichtigen Aspekt der KI dar. Der Vorgang des Planens unterteilt sich dabei in zwei Phasen:

  1. Die Zielformulierung: Ausgehend vom momentanen Umgebungs- bzw. Weltzustand wird ein Ziel definiert. Ein Ziel ist hierbei eine Menge von Weltzuständen, bei der ein bestimmtes Zielprädikat erfüllt ist.
  2. Die Problemformulierung: Nachdem bekannt ist, welche Ziele angestrebt werden sollen, wird in der Problemformulierung festgelegt, welche Aktionen und Weltzustände betrachtet werden sollen. Es existieren hierbei verschiedene Problemtypen.

Planungssysteme planen und erstellen aus solchen Problembeschreibungen Aktionsfolgen, die Agentensysteme ausführen können, um ihre Ziele zu erreichen.

Optimierungsmethoden

Oft führen Aufgabenstellungen der KI zu Optimierungsproblemen. Diese werden je nach Struktur entweder mit Suchalgorithmen aus der Informatik oder, zunehmend, mit Mitteln der mathematischen Programmierung gelöst. Bekannte heuristische Suchverfahren aus dem Kontext der KI sind evolutionäre Algorithmen.

Logisches Schließen

Eine Fragestellung der KI ist die Erstellung von Wissensrepräsentationen, die dann für automatisches logisches Schließen benutzt werden können. Menschliches Wissen wird dabei – soweit möglich – formalisiert, um es in eine maschinenlesbare Form zu bringen. Diesem Ziel haben sich die Entwickler diverser Ontologien verschrieben.

Schon früh beschäftigte sich die KI damit, automatische Beweissysteme zu konstruieren, die Mathematikern und Informatikern beim Beweisen von Sätzen und beim Programmieren (Logikprogrammierung) behilflich wären. Zwei Schwierigkeiten zeichneten sich ab:

  1. Formuliert man Sätze in den natürlicher Sprache nahen, relativ bequemen Beschreibungssprachen, werden die entstehenden Suchprobleme allzu aufwändig. In der Praxis mussten Kompromisse geschlossen werden, bei denen die Beschreibungssprache für den Benutzer etwas umständlicher, die zugehörigen Optimierungsprobleme für den Rechner dafür jedoch einfacher zu handhaben waren (Prolog, Expertensysteme).
  2. Selbst mächtige Beschreibungssprachen werden unhandlich, wenn man versucht, unsicheres oder unvollständiges Wissen zu formulieren. Für praktische Probleme kann dies eine ernste Einschränkung sein. Die aktuelle Forschung untersucht daher Systeme, die die Regeln der Wahrscheinlichkeitsrechnung anwenden, um Unwissen und Unsicherheit explizit zu modellieren. Algorithmisch unterscheiden sich diese Methoden von den älteren Verfahren: neben Symbolen werden auch Wahrscheinlichkeitsverteilungen manipuliert.

Eine andere Form des logischen Schließens stellt die Induktion dar (Induktionsschluss, Induktionslogik), in der Beispiele zu Regeln verallgemeinert werden (maschinelles Lernen). Auch hier spielen Art und Mächtigkeit der Wissensrepräsentation eine wichtige Rolle. Man unterscheidet zwischen symbolischen Systemen, in denen das Wissen – sowohl die Beispiele als auch die induzierten Regeln – explizit repräsentiert ist, und subsymbolischen Systemen wie neuronalen Netzen, denen zwar ein berechenbares Verhalten „antrainiert“ wird, die jedoch keinen Einblick in die erlernten Lösungswege erlauben.

Approximationsmethoden

In vielen Anwendungen geht es darum, aus einer Menge von Daten eine allgemeine Regel abzuleiten (maschinelles Lernen). Mathematisch führt dies zu einem Approximationsproblem. Im Kontext der KI wurden hierzu unter anderem künstliche neuronale Netze vorgeschlagen, die als universale Funktionsapproximatoren eingesetzt werden können, jedoch insbesondere bei vielen verdeckten Schichten schwer zu analysieren sind. Manchmal verwendet man deshalb alternative Verfahren, die mathematisch einfacher zu analysieren sind.

Künstliches Neuronales Netz

Große Fortschritte erzielt die künstliche Intelligenz in jüngster Zeit im Bereich künstlicher neuronaler Netze, auch unter dem Begriff Deep Learning bekannt. Dabei werden neuronale Netze, die grob von der Struktur des Gehirns inspiriert sind, künstlich auf dem Computer simuliert. Viele der jüngsten Erfolge wie bei Handschrifterkennung, Spracherkennung, Gesichtserkennung, autonomem Fahren, maschineller Übersetzung, auch der Erfolg von AlphaGo beruhen auf dieser Technik.

Anwendungen

Für künstliche Intelligenz gibt es zahlreiche Anwendungsgebiete. Einige Beispiele kurz zusammengefasst:

KI in der Medizin

KI in der Juristik

Ein großer Teil der Arbeit von Juristen besteht in der Analyse von Akten, zum Beispiel von Präzedenzfällen, um daraus Argumente zu entwickeln. Derartige Arbeit kann mittlerweile zu einem Teil von KI-Anwendungen übernommen werden. Die Beratungsfirma McKinsey schätzte 2017, dass etwa 22 Prozent der Arbeit von Anwälten und 35 Prozent der Arbeit von Rechtshelfern mit Hilfe von KI-Systemen automatisiert werden könnte. Die KI-Systeme werden anhand von Millionen von Dokumenten und Fallbeispielen und juristischen Anträgen trainiert. Danach kann eine KI diejenigen Dokumente markieren, die ein Jurist für seinen Fall braucht; oft besser, als dies ein Mensch könnte. JPMorgan gab bekannt, die KI Contract Intelligence einzusetzen, die nach Aussagen von JPMorgan eine Menge von Daten in Sekunden analysieren kann, wofür Juristen und Rechtshelfer 360.000 Stunden benötigen würden.

KI bei Tötungsmaschinen und Kriegswaffen

Am 18. September 2021 wurde bekannt, dass der iranische Kernphysiker, Hochschullehrer und Angehörige der iranischen Revolutionsgarden Mohsen Fachrisadeh durch KI-gesteuerte Tötungs-Roboter mit hoher Schusswaffen-Präzision ermordet wurde. Trotz der bekannten Gefährdung des Wissenschaftlers, seiner Eskortierung und seinem starken Personenschutz waren, einem Artikel der New York Times zufolge, nur 15 hochpräzise Schüsse zu seiner Tötung notwendig. Dies wurde durch eine KI-gestützte Gesichtserkennung möglich, die offenbar genau zwischen dem Wissenschaftler, seiner Frau und seinen Kindern unterscheiden konnte. Die Frau saß, genau wie seine Söhne, nur wenige Zentimeter von ihm entfernt im Auto und blieb beim Attentat dennoch physisch unverletzt. Die Kontrolle über das Attentat erfolgte dem Artikel zufolge aus 1600 Kilometer Entfernung, an einem nicht näher genannten Ort.

Im Zuge des russischen Angriffskrieges auf die Ukraine seit dem Februar 2022 ist die mediale Aufmerksamkeit für den Einsatz von KI für militärische Zwecke gestiegen. In Deutschland beschäftigen sich sowohl die Bundeswehr als auch die private Rüstungswirtschaft intensiv mit der Entwicklung und Implementierung von KI-unterstützten Waffensystemen.

Im Mai 2023 erregte der Vortrag eines Colonels der U.S. Air Force Aufsehen, der bei einer Militär-Konferenz in London geschildert hatte, wie KI ihre Einsatz-Parameter verletzt und den eigenen Kontrollturm angegriffen habe, weil sie den menschlichen Operator als Hindernis bei der Erfüllung ihrer Mission betrachtet hätte. Kurz darauf ließ das U.S.-Militär klarstellen, es habe sich um keine echte Übung, sondern lediglich um ein Gedankenexperiment gehandelt.

KI im Marketing

Im Marketing wird künstliche Intelligenz eingesetzt, um zum Beispiel Werbe-E-Mails zu verschicken, den Kundendienst durch Social Bots und Chatbots abzulösen, Analysen und Prognosen des Markts und des Kunden, beispielsweise auf Basis von Big Data, durchzuführen und kundenspezifische Werbeanzeigen, Empfehlungen und Suchergebnisse, sowie programmierte Abläufe zu entwickeln. So beabsichtigte der Online-Versandhändler Zalando im März 2018, 250 Arbeitsplätze im Marketingbereich im Standort Berlin zu streichen, die durch künstliche Intelligenz ersetzt werden sollen.

KI in Computer- und Gesellschaftsspielen

In Computerspielen wird eine KI meistens dazu verwendet um NPC, sogenannte Nicht-Spieler-Charaktere, die menschenähnliches Verhalten simulieren (zum Beispiel als simulierte Verbündete oder Computergegner) zu steuern oder bestimmte Dinge in der Spielwelt oder bei den Funktionen des Spielecharakters (zum Beispiel Routenfindung, prozedurale Generierung, automatische Verbesserungen und Vervollständigungen beim Streckenbau oder andere Algorithmen) zu berechnen. Bei einigen Spielen lässt sich der Schwierigkeitsgrad der KI-Gegner einstellen und optional wählen ob man gegen eine KI, gegen echte Spieler oder eine Mischform spielen möchte. Bei ein paar Spielen kann sich die KI auch automatisch an das Spielverhalten anpassen oder kann aus Fehlern lernen. Da im Einzelspielermodus oft Gegner fehlen, wird auf eine KI zurückgegriffen. Zudem wird KI in Computerspielen verwendet, um viele oder sehr spezielle Charaktere zu simulieren, die nicht oder sehr schwer von echten Menschen übernommen werden könnten. Teilweise lassen sich KI-Anwendungen in Computerspielen aber auch einfach austricksen, da ein Mensch ein bestimmtes Muster einer KI umgehen kann. Der Realismus und das Gameplay eines Computerspiels wird daher auch oft an der KI gemessen.

Auch wird KI in Strategie-Brettspielen als Ersatz für den menschlichen Partner eingesetzt. Gegen sehr leistungsfähige Versionen dieser Programme haben auch Weltmeister kaum Gewinnchancen. Erfolge gegen menschliche Profispieler erzielte KI zum Beispiel in Backgammon, Schach, Checkers, Go und StarCraft II. Das Meistern komplexer Spiele ist oft Gegenstand der Forschung, um so neue Methoden der künstlichen Intelligenz zu entwickeln und zu demonstrieren. Inzwischen tragen diese Programme Partien untereinander aus. 2016 besiegte die auf DeepMind aufbauende KI AlphaGo den 18-maligen Go-Weltmeister, den Südkoreaner Lee Sedol unter Turnierbedingungen 4:1. Ende 2017 hat die Neuentwicklung AlphaZero gegen das bis dahin weltbeste Schachprogramm Stockfish in 100 ausgetragenen Partien deutlich obsiegt. 2019 gelang es der DeepMind-Weiterentwicklung Alpha Star, menschliche Top-Spieler beim populären und als sehr schwer geltenden Strategiespiel StarCraft II 10:1 zu besiegen.

Darüber hinaus werden auch KI-Anwendungen entwickelt, die anstelle eines menschlichen Spielers Videospiele wie Jump ’n’ Runs, Rollenspiele oder Rennspiele steuern. Ähnlich ist die Entwicklung im E-Sport-Bereich, in dem Profigamer versuchen, die besten KI-Systeme zu schlagen, während Entwickler darauf hinarbeiten, die besten Spieler durch eine KI zu besiegen.

KI zur Erzeugung von Bildern und Kunstwerken

Forscher aus Tübingen haben neuronale Netze dazu verwendet, ein vorgegebenes Foto im Stil eines berühmten Künstlers zu malen z. B. Van Gogh oder Edvard Munch. Forscher bei Google haben neuronale Netze darauf trainiert, aus einer Art weißem Rauschen Bilder im Stil von Van Gogh und anderen Künstlern zu produzieren. Die Bilder wurden später auf einer Auktion versteigert.

Im Juli 2017 stellten Forscher der Rutgers-Universität eine KI vor, die künstlerische Gemälde produziert. Die KI wurde mit ca. 80.000 Bildwerken der westlichen Kunstgeschichte trainiert. Die von der KI erstellten Gemälde wurden mit Bildern, die auf der Kunstmesse Art Basel ausgestellt worden waren, vermischt und 18 Testpersonen (künstlerischen Laien) in einem Blindtest zur Beurteilung vorgelegt. Die Testpersonen sollten einschätzen, ob die Bilder von Menschen oder einem Computer erzeugt worden waren. Bei den durch echten, auf der Art Basel ausgestellten Kunstwerken unterstellten die Testpersonen bei 52 % aller Werke, sie seien durch einen Computer erstellt. Bei den KI-basierten Bildern, nahmen die Testpersonen das nur für 25 % aller Bilder an.

Im März 2018 wurde ein Videokunstwerk publiziert, in dem eine durch KI erschaffene Ornella Muti agierte. Der Künstler Joseph Ayerle hatte mit Hilfe eines künstlichen neuronalen Netzes neue Filmsequenzen errechnet, die die echte italienische Schauspielerin nie gespielt hat. 2021 wurde der Kurzfilm „Fellini Forward“ aufgeführt. Bei der Produktion der Frederico Fellini-Hommage setzte das Produktionsteam auf KI-Werkzeuge, um dramaturgische, visuelle und linguistische Muster in den Werken Fellinis zu erkennen und sie im neuen Film einzusetzen.

Im Oktober 2018 versteigerte das Auktionshaus Christie’s das durch künstliche Intelligenz erschaffene „Portrait of Edmond de Belamy“. Das ursprünglich auf einen Verkehrswert von 7.000 bis 10.000 US-Dollar geschätzte Bild erzielte in der Auktion einen Erlös von 432.500 Dollar.

Hinter der Herstellung des Porträts stand die französische Künstlergruppe Obvious, die eine künstliche Intelligenz mit den Bilddaten von 15.000 echten Gemälden des 14. bis 20. Jahrhunderts trainiert hatte. Besondere Beachtung in der Presse fand, dass das Bild nicht mit den Signaturen der Künstler unterzeichnet wurde, sondern mit der Formel „min G max D Ex[log(D(x))]+Ez[log(1-D(G(z)))]“, die nach Angaben des Künstlerteams bei seiner Entstehung genutzt wurde.

Der Autor George R. R. Martin schrieb an seinem sechsten Buch der Reihe Game of Thrones, das von der Fangemeinde ungeduldig erwartet wurde. Der Programmierer Zack Thoutt trainierte eine KI (Recurrent Neural Net) mit den ersten fünf Büchern der Serie und ließ von der KI ein sechstes Buch schreiben. Das Ergebnis wurde im Sommer 2017 im Internet veröffentlicht. Dabei entwickelte die KI einzelne Charaktere genauso weiter, wie das in manchen Fan-Theorien erwartet wurde, ohne dass die KI davon wusste. Mängel gibt es bei der Grammatik, einzelne Charaktere, die bereits verstorben waren, tauchen wieder auf und die Handlungsstränge sind nicht sehr spannend.

Sunspring ist der erste Kurzfilm (2016), dessen Drehbuch von einer KI geschrieben wurde.

Google versucht in seinem Magenta-Projekt, KI-Systeme zu erzeugen, die kreativ sind. So wurde im Sommer 2017 eine Klavier-Improvisation vorgestellt, die von einer KI komponiert wurde. Bereits im Sommer 2016 veröffentlichte das Projekt Magenta einen kurzen Pop-Song, der von einer KI komponiert wurde.

Die Musik des Albums „I am AI“ der Sängerin Taryn Southern, vorgestellt im Herbst 2017, wurde von einer KI komponiert. Um einen Song mit Hilfe einer KI zu komponieren, verwendet man eine Software wie etwa Amper Music oder Jukedeck, wählt das Genre und weitere Parameter wie Länge des Songs, Instrumentierung usw. Innerhalb von Sekunden komponiert die KI dann einen einzigartigen Song. Ein Musiker kann daraufhin Bruchstücke dieser Beispiele zu einem eigenen Song zusammenfügen. Somit kann jedermann mehr oder weniger professionelle Musik kreieren. Immer mehr Musiker geben zu, beim Komponieren KI als Werkzeug zu benutzen. Auch das Album „Hello World“ von Skygge wurde vollständig mit einer KI (Flow-Machine) komponiert. Die KI komponiert Soundstücke, die dann von Menschen sortiert, selektiert und zusammengesetzt werden, das sog. Kuratieren. Ein Team von Musikwissenschaftlern und KI-Experten unter Leitung von Matthias Röder, Direktor des Salzburger Karajan-Instituts, vollendete 2021 mit Hilfe einer künstlichen Intelligenz die unvollendete 10. Sinfonie des Komponisten Beethoven.

Ab dem Jahr 2022 wurden den Nutzern innovative Text-zu-Bild-KI-Systeme zur Erzeugung von Bildern zur Verfügung gestellt, die einen deutlichen Fortschritt gegenüber früheren Technologien darstellten. Zu den namhaften Bildgeneratoren zählten beispielsweise Midjourney, DALL-E (entwickelt vom OpenAI-Team, das auch hinter ChatGPT steht) und Stable Diffusion. Eine herausragende Eigenschaft dieser neuen Programme bestand darin, dass Bilder mithilfe von Wortanweisungen, sogenannten „Prompts“, erstellt werden konnten. Zusätzlich war es möglich, der KI eigene Bilder als Beispiele vorzugeben. Ab dem Jahr 2023 erreichten die KI-generierten Bilder ein so hohes Maß an Fotorealismus, dass man sie teilweise für echte Fotos halten konnte. Zwei KI-generierte Bilder erlangten große Aufmerksamkeit in der Öffentlichkeit, da sie eine bemerkenswerte fotografische Qualität aufwiesen und von vielen Betrachtern zunächst für echte Fotos gehalten wurden: Ein KI-generiertes Bild von Papst Franziskus, der einen auffällig modischen Wintermantel trug, und ein KI-generiertes Bild eines simulierten Angriffs auf das Pentagon.

Kontrovers ist die Sicht der am Diskurs beteiligten Künstler und Experten über die Rolle der KI als Urheber eines Kunstwerks. Das Motto der Künstlergruppe Obvious lautet: „Kreativität ist nicht nur etwas für Menschen.“ Konträr dazu steht die Aussage des Künstlers Joseph Ayerle, der vom Massachusetts Institute of Technology mit den Worten zitiert wird: „KI kann erschaffen, aber sie ist nicht schöpferisch“. Matthias Röder, der ein Team leitete, das den Versuch unternahm, mit KI-Hilfe Beethovens 10. Sinfonie zu vollenden, sprach von einer „Kollaboration zwischen Mensch und Maschine“.

In juristischer Hinsicht ist strittig, ob und wie von einer KI geschaffene Kunstwerke dem Schutz des Urheberrechtsgesetzes unterliegen. Denn gemäß § 2 II UrhG können „Werke“ im Sinne des Urheberrechts nur „persönliche geistige Schöpfungen“ sein. Ein ausschließlich von einer Maschine geschaffenes Werk fällt nicht darunter, weil es nach einheitlicher Ansicht einer menschlich-gestalterische Tätigkeit erfordert. Jedenfalls in den Fällen, in denen die KI nicht nur als Hilfsmittel, Instrument oder Werkzeug des Werkschaffenden eingesetzt wird, sondern jegliche Kontrolle über Prozess und Ergebnis durch einen menschlichen Schöpfer aufgegeben wurde, fehlt es an einer geistigen Verbindung des „Werkes“ zu einem „Schöpfer“ im Sinne des § 2 II UrhG, sodass Urheberrecht dann nicht besteht.

KI zur Herstellung von Produktdesign

Ein Team des US-amerikanischen 3D-Software-Experten Autodesk und der bekannte Designer Philippe Starck haben gemeinsam den – nach Angaben der Beteiligten – ersten „von künstlicher Intelligenz und Menschen gemeinsam entwickelte Stuhl“ erschaffen, den sogenannten A. I. Chair. 2023 wurde bekannt, dass die NASA eine eigene Software nutzt, um mit Hilfe von KI das Design von Bauteilen für Raumschiffe und andere Geräte für Raumfahrten optimal zu gestalten. Das organisch anmutende Aussehen dieser KI-generierten Bauteile unterscheidet sich deutlich vom menschengemachten Design.

KI in der Schulbildung

Einige Autoren betrachten künstliche Intelligenz als Schlüsseltechnologie in der Schulbildung.

  • durch Chatbots kann das Lernen von Sprachen unterstützt werden
  • durch Maschinelles Lernen können Lernangebote dem Lernstand der Schüler angepasst werden
  • durch Big Data können Bildungsverläufe prognostiziert und Selektionsentscheide gesteuert werden

KI in der Hochschulbildung

An einigen Hochschulen werden KI-Systeme zur individuellen Unterstützung von Studierenden und Lehrenden eingesetzt.

  • Automatisierte Assessments unterstützen Studierende beim Wissenserwerb
  • Mit Hilfe von Learning Analytics werden digitale Bildungsangebote optimiert
  • Adaptive Lernumgebungen passen sich an die individuellen Bedürfnisse der Lernenden an (z. B. MathSpring)
  • Chatbots beantworten häufig gestellte Fragen (z. B. Eliza, Mitsuku, Jill Watson)
  • Empfehlungssysteme helfen bei der Wahl von Studienfächern, Kursen, Stipendien und Ressourcen (z. B. Literatur)

KI beim Klimaschutz

KI kann Satellitenbilder auswerten und so ermitteln, wo welche Treibhausgase emittiert werden, ob Gebäude energieeffizient sind sowie wo und in welchem Umfang Wälder abgeholzt oder wieder aufgeforstet werden. Beispiele aus den Bereichen Landwirtschaft und Landnutzung sind zum Beispiel NASA Harvest und der Copernicus Land Monitoring Service.

Mit KI können Daten zu Wind- und Solarenergieerzeugung, Verkehrsaufkommen und Extremwetterereignissen analysiert werden und daraus Prognosen für zukünftige Bedarfe und Alternative entwickelt werden. Ein Beispiel aus der Praxis ist Open Climate Fix, eine Organisation, welche Open-Source-Modelle für ein sogenanntes Nowcasting entwickelt, das heißt, die Wolkenmenge auf Satellitenbildern wird analysiert und daraus, in Kombination mit anderen Daten, die Solarstromproduktion für die nächsten Stunden sehr genau vorausgesagt.

Mit Hilfe von KI können Teile großer Klimamodelle nachgebildet, Stromnetze optimiert und klimafreundliche Stadtplanungstools entwickelt werden. Zwar kann KI physikalische Klimamodelle nicht ersetzen, doch kann sie in einigen Fällen gute Annäherungen für besonders rechenzeitintensive Modellkomponenten liefern, etwa indem ein näherungsweises Modell der Wolkenphysik nachgebildet wird. Auf diesem Wege lassen sich Klimamodelle nicht nur schneller berechnen, KI hilft hier auch, den hohen Energieaufwand der erforderlichen Supercomputer zu minimieren.

KI in der Materialwissenschaft

KI in der Arbeitswelt

Das Institut für Arbeitsmarkt- und Berufsforschung (IAB) forscht zu Veränderungen der Arbeitswelt durch künstliche Intelligenz. Vorgestellt werden auf einer Infoplattform Forschungsprojekte und Erkenntnisse zu Folgen für Beschäftigung, Löhne und Qualifikationsanforderungen.

KI in Logistik und Verkehr

Wie 2023 bekannt wurde, setzt die Deutsche Bahn KI ein, die Pünktlichkeit ihrer Züge zu verbessern. Nach einen Pilotprojekt in Stuttgart wurde das Projekt auf das Rhein-Main-Gebiet und Berlin ausgedehnt.

Turing-Test

Um ein Kriterium zu haben, wann eine Maschine eine dem Menschen gleichwertige Intelligenz simuliert, wurde von Alan Turing der nach ihm benannte Turing-Test vorgeschlagen. Dabei stellt ein Mensch per Terminal beliebige Fragen an einen anderen Menschen bzw. eine KI, ohne dabei zu wissen, wer jeweils antwortet. Der Fragesteller muss danach entscheiden, ob es sich beim Interviewpartner um eine Maschine oder einen Menschen handelte. Ist die Maschine nicht von einem Menschen zu unterscheiden, so ist sie laut Turing intelligent. Bisher konnte keine Maschine den Turing-Test zweifelsfrei bestehen. Seit 1991 existiert der Loebner-Preis für den Turing-Test.

Technologische Singularität

Grob wird darunter der Zeitpunkt verstanden, an dem künstliche Intelligenz die menschliche Intelligenz übertrifft. Von diesem Zeitpunkt wird die weitere Entwicklung hauptsächlich von der KI vorangetrieben und nicht mehr vom Menschen.

Bewusstsein bei künstlicher Intelligenz

In den Neurowissenschaften ist es eine Grundannahme, dass Bewusstseinsprozesse mit neuronalen Prozessen des Gehirns korrelieren (siehe Neuronales Korrelat des Bewusstseins). Nach Jürgen Schmidhuber ist das Bewusstsein nur ein Nebenprodukt des Problemlösens des Gehirns. So sei auch bei künstlichen Problemlösern (z. B. autonomen mobilen Robotern) von Vorteil, wenn diese sich ihrer selbst und ihrer Umgebung „bewusst“ seien. Schmidhuber bezieht sich bei „Bewusstsein“ im Kontext autonomer Roboter auf ein digitales Weltmodell inklusive des Systems selbst, nicht jedoch auf das Erleben von Zuständen. Ein Weltmodell könnte im Kontext von Reinforcement Learning dadurch erlernt werden, dass Aktionen belohnt werden, die das Weltmodell erweitern.

Angrenzende Wissenschaften

Sprachwissenschaft

Die Interpretation menschlicher Sprache durch Maschinen besitzt bei der KI-Forschung eine entscheidende Rolle. So ergeben sich etwaige Ergebnisse des Turing-Tests vor allem in Dialogsituationen, die bewältigt werden müssen.

Die Sprachwissenschaft liefert mit ihren Grammatikmodellen und psycholinguistischen Semantikmodellen wie der Merkmals- oder der Prototypensemantik Grundlagen für das maschinelle „Verstehen“ komplexer natürlichsprachlicher Phrasen. Zentral ist die Frage, wie Sprachzeichen eine tatsächliche Bedeutung für eine künstliche Intelligenz haben können. Das Chinese-Room-Argument des Philosophen John Searle sollte indes zeigen, dass es selbst dann möglich wäre, den Turing-Test zu bestehen, wenn den verwendeten Sprachzeichen dabei keinerlei Bedeutung beigemessen wird. Insbesondere Ergebnisse aus dem Bereich Embodiment betonen zudem die Relevanz von solchen Erfahrungen, die auf der Verkörperung eines Agenten beruhen sowie dessen Einbindung in eine sinnvolle Umgebung für jede Form von Kognition, also auch zur Konstruktion von Bedeutung durch eine Intelligenz.

Eine Schnittstelle zwischen der Linguistik und der Informatik bildet die Computerlinguistik, die sich unter anderem mit maschineller Sprachverarbeitung und künstlicher Intelligenz beschäftigt.

Psychologie

Die Psychologie beschäftigt sich unter anderem mit dem Begriff Intelligenz.

Psychotherapie

In der Psychotherapieforschung existieren seit geraumer Zeit experimentelle Anwendungen der künstlichen Intelligenz, um Defizite und Engpässe in der psychotherapeutischen Versorgung zu überbrücken und Kosten zu sparen, aber auch um sich anbahnende Krisen bei Patienten auf der Warteliste frühzeitig zu erkennen.

Philosophie

Die philosophischen Aspekte der KI-Problematik gehören zu den weitreichendsten der gesamten Informatik.

Die Antworten, die auf die zentralen Fragen dieses Bereiches gegeben werden, reichen weit in ontologische und erkenntnistheoretische Themen hinein, die das Denken des Menschen schon seit den Anfängen der Philosophie beschäftigen. Wer solche Antworten gibt, muss die Konsequenzen daraus auch für den Menschen und sich selbst ziehen. Nicht selten möchte man umgekehrt vorgehen und die Antworten, die man vor der Entwicklung künstlicher Intelligenz gefunden hat, auf diese übertragen. Doch wie sich zeigte, hat die künstliche Intelligenz zahlreiche Forscher dazu veranlasst, Probleme wie das Verhältnis zwischen Materie und Geist, die Ursprünge des Bewusstseins, die Grenzen der Erkenntnis, das Problem der Emergenz, die Möglichkeit außermenschlicher Intelligenz usw. in einem neuen Licht zu betrachten und zum Teil neu zu bewerten.

Eine dem metaphysischen bzw. auch idealistischen Denken verpflichtete Sichtweise hält es (im Sinn einer schwachen KI) für unmöglich, dass Maschinen jemals mehr als nur simuliertes Bewusstsein mit wirklicher Erkenntnis und Freiheit besitzen könnten. Aus ontologischer Sicht kritisiert der amerikanische Philosoph Hubert Dreyfus die Auffassung der starken KI. Aufbauend auf der von Martin Heidegger in dessen Werk Sein und Zeit entwickelten Ontologie der „Weltlichkeit der Welt“ versucht Dreyfus zu zeigen, dass hinter das Phänomen der Welt als sinnhafte Bedeutungsganzheit nicht zurückgegangen werden kann: Sinn, d. h. Beziehungen der Dinge in der Welt aufeinander, sei ein Emergenzphänomen, denn es gibt nicht „etwas Sinn“ und dann „mehr Sinn“. Damit erweist sich jedoch auch die Aufgabe, die sinnhaften Beziehungen zwischen den Dingen der Welt in einen Computer einzuprogrammieren, als eigentlich unmögliches bzw. unendliches Vorhaben. Dies deshalb, weil Sinn nicht durch Addition von zunächst sinnlosen Elementen hergestellt werden kann.

Eine evolutionär-progressive Denkrichtung sieht es hingegen (im Sinn einer starken KI) als möglich an, dass Systeme der künstlichen Intelligenz einmal den Menschen in dem übertreffen könnten, was derzeit noch als spezifisch menschlich gilt. Dies birgt zum einen die Gefahr, dass solche KI-Maschinen sich gegen die Interessen der Menschen wenden könnten. Andererseits birgt diese Technologie die Chance, Probleme zu lösen, deren Lösung dem Menschen wegen seiner limitierten Kapazitäten schwerfällt (siehe auch technologische Singularität).

Weitere Anknüpfungspunkte lassen sich in der analytischen Philosophie finden.

Neben der Frage nach dem Sein und der nach dem Bewusstsein stellt sich im Rahmen der Rechtsphilosophie und Roboterethik auch die Frage, ob eine KI für ihr gesetzwidriges Handeln oder Fehlverhalten verantwortlich gemacht werden kann (z. B. bei einem Autounfall durch ein autonomes Fahrzeug) und wer alles dafür haftet. Entwickler werden mit der Frage konfrontiert, wie eine KI moralisch und ethisch richtig handelt. So wird zum Beispiel überlegt, wie man das Trolley-Problem bei autonomen Fahrzeugen lösen soll.

Der russisch-amerikanische Biochemiker und Sachbuchautor Isaac Asimov beschreibt in seinen drei Robotergesetzen die Voraussetzungen für ein friedliches und unterstützendes Zusammenleben zwischen KI und Mensch. Diese Gesetze wurden später von anderen Autoren erweitert.

Bei Karl Marx finden sich im sogenannten Maschinenfragment, einem Teil der Grundrisse (1857–58), Überlegungen zur Ersetzung menschlicher Arbeitskraft durch Maschinen, die sich auch auf Maschinen mit Künstlicher Intelligenz anwenden lassen.

Menschenrechte

Zu den zentralen Fragen beim KI-Einsatz gehören die Aufteilung rechtlicher Verpflichtungen zwischen Staaten und Unternehmen sowie die Implikationen der Menschenrechte im Hinblick auf den Einsatz von KI in bestimmten Anwendungsbereichen, z. B. bei der Gesichtserkennung oder Erleichterung der Entscheidungsfindung von Gerichten. Auch wird das Ausmaß der technologischen Zusammenarbeit im Bereich der KI mit Staaten, die sich nicht an menschenrechtliche Grundstandards halten, aus wirtschaftsethischer und völkerrechtlicher Perspektive diskutiert.

Informatik

Die künstliche Intelligenz ist mit den anderen Disziplinen der Informatik eng verzahnt. Eine Abgrenzung kann anhand der erzielten Ergebnisse versucht werden. Hierzu scheint es sinnvoll, verschiedene Dimensionen von Intelligenz zu unterscheiden:

  1. Die Fähigkeit zur Verarbeitung beliebiger Symbole (nicht nur Zahlen).
  2. Der Aufbau eines inneren Modells der äußeren Welt, eines Selbstmodells, sowie der Beziehung von Selbst und Welt.
  3. Die Fähigkeit zu einer zweckentsprechenden Anwendung des Wissens.
  4. Die Fähigkeit, die im gespeicherten Wissen enthaltenen Zusammenhänge aufzudecken, d. h. logisch schlussfolgern zu können.
  5. Die Fähigkeit zur Verallgemeinerung (Abstraktion) und zur Spezialisierung (d. h. zu Anwendung allgemeiner Zusammenhänge auf konkrete Sachverhalte).
  6. Das Vermögen, erworbenes Wissen und vorhandene Erfahrung auf neue, bisher unbekannte Situationen zu übertragen.
  7. Die Fähigkeit, sich planvoll zu verhalten und entsprechende Strategien zum Erreichen der Ziele bilden zu können.
  8. Anpassungsfähigkeit an verschiedene, u. U. sich zeitlich ändernde Situationen und Problemumgebungen.
  9. Lernfähigkeit, verbunden mit dem Vermögen, partiellen Fortschritt oder Rückschritt einschätzen zu können.
  10. Die Fähigkeit, auch in unscharf bzw. unvollständig beschriebenen oder erkannten Situationen handeln zu können.
  11. Die Fähigkeit zur Mustererkennung (Besitz von Sensoren) und zur aktiven Auseinandersetzung mit der Umwelt (Besitz von Effektoren).
  12. Über ein Kommunikationsmittel von der Komplexität und Ausdrucksfähigkeit der menschlichen Sprache verfügen.

Kritik an der KI-Forschung


Stephen Hawking warnte 2014 vor der KI und sah darin eine Bedrohung für die Menschheit. Durch die KI könnte das Ende der Menschheit eingeleitet werden. Ob die Maschinen irgendwann die Kontrolle übernehmen werden, werde die Zukunft zeigen. Aber bereits heute sei klar, dass die Maschinen die Menschen zunehmend vom Arbeitsmarkt verdrängen.

Im August 2017 forderten 116 Unternehmer und Experten aus der Technologiebranche (u. a. Mustafa Suleyman, Elon Musk, Yoshua Bengio, Stuart Russell, Jürgen Schmidhuber) in einem offenen Brief an die UN, dass autonome Waffen verboten werden sollten bzw. auf die seit 1983 bestehende CCW-Liste gesetzt werden sollen. Die Certain Conventional Weapons sind von der UN verboten und beinhalten unter anderem Chemiewaffen. Nach Schwarzpulver und der Atombombe drohe die dritte Revolution der Kriegsführung. Zitat aus dem Schreiben: „Wenn diese Büchse der Pandora einmal geöffnet ist, wird es schwierig, sie wieder zu schließen“ und „Einmal erfunden, könnten sie bewaffnete Konflikte erlauben in einem nie dagewesenen Ausmaß, und schneller, als Menschen sie begreifen können“. Terroristen und Despoten könnten die autonomen Waffen nutzen und sogar hacken.

Argumentativ entgegengetreten sind solchen Positionen u. a. Rodney Brooks und Jean-Gabriel Ganascia.

Im Februar 2018 wurde ein Bericht einer Projektgruppe führender Experten im Bereich KI veröffentlicht, der vor möglichen „Bösartige[n] Nutzungen künstlicher Intelligenz“ (englischer Originaltitel: „The Malicious Use of Artificial Intelligence“) warnt. Beteiligt waren daran unter anderem Forscher der Universitäten von Oxford, Yale und Stanford, sowie Entwickler von Microsoft und Google. Der Bericht nimmt Bezug auf schon existierende Technologien und demonstriert anhand von diversen Szenarien, wie diese von Terroristen, Kriminellen und despotischen Regierungen missbraucht werden könnten. Die Autoren des Berichts fordern daher eine engere Zusammenarbeit von Forschern, Entwicklern und Gesetzgeber im Bereich KI und schlagen konkrete Maßnahmen vor, wie die Gefahren des Missbrauchs verringert werden könnten.

Der Historiker Yuval Noah Harari sagt, „künstliche Intelligenz und Biotechnologie können zerstören, was den Menschen ausmacht.“ Er warnt vor einem Wettrüsten im Bereich der künstlichen Intelligenz und empfiehlt globale Zusammenarbeit angesichts dieser „existenziellen Bedrohung.“

Der Philosoph Richard David Precht wendet sich gegen die Vorstellung, dass künftig böser Wille oder Machtstreben seitens einer entwickelten künstlichen Intelligenz drohe; das Gefahrenpotential liege vielmehr in ihrem falschen Einsatz.

Die ehemalige Google-Teamleiterin Timnit Gebru warnt vor dem bias und dem Energiebedarf großer Sprachmodelle, was Diskriminierung und Klimakrise verschärfen könnte.

Vorschläge zum Umgang mit KI

Der Präsident von Microsoft, Brad Smith schlug vor, einen Verhaltenskodex aufzustellen, wie etwa eine Digitale Genfer Konvention, um Risiken der künstlichen Intelligenz zu verringern.

Der Ethiker Peter Dabrock empfiehlt im Kontext der Benutzung und Programmierung von künstlicher Intelligenz nicht nur die digitale Kompetenz der Beteiligten zu erhöhen, sondern auch auf klassische Bildungselemente zu setzen. Um mit den dazugehörigen Herausforderungen zurechtzukommen sowie die Fähigkeiten zur Unterscheidung und zur Erkennung von Mehrdeutigkeit zu erhöhen, seien Kenntnisse aus Religion, Literatur, Mathematik, Fremdsprachen, Musik und Sport eine gute Voraussetzung.

Der Deutsche Bundestag hat am 28. Juni 2018 eine Enquete-Kommission Künstliche Intelligenz – Gesellschaftliche Verantwortung und wirtschaftliche Potenziale eingesetzt. Am 28. Oktober 2020 hat die Kommission ihren Abschlussbericht vorgelegt. Künstliche Intelligenz ist demnach die nächste Stufe der Digitalisierung. Unter dem Leitbild einer „menschenzentrierten KI“ wird eine „demokratische Gestaltung“ der Entwicklung gefordert, so dass KI-Anwendungen vorrangig auf das Wohl und die Würde der Menschen ausgerichtet seien und einen gesellschaftlichen Nutzen bringen. Um einer Diskriminierung von Menschen entgegenzuwirken „braucht es, wenn KI über Menschen urteilt, einen Anspruch auf Transparenz, Nachvollziehbarkeit und Erklärbarkeit von KI-Entscheidungen, damit eine gerichtliche Überprüfung automatisierter Entscheidungen möglich ist“.

2021 veröffentlichte die EU-Kommission einen Vorschlag über eine KI-Verordnung, über die derzeit verhandelt wird.

Im März 2023 wurde ein u. a. von Elon Musk unterstützter Aufruf zu einer 6-monatigen KI-Entwicklungspause veröffentlicht.

Verbreitung von KI in Deutschland

Die Zahl der Betriebe, die KI-Technologien einsetzen, ist in Deutschland noch relativ gering. Ende 2018 haben nur 6 Prozent der Unternehmen KI genutzt oder implementiert. 17 Prozent haben angegeben, KI-Einsätze zu testen oder zumindest solche zu planen. Auch die ZEW-Studie kommt zu einem ähnlichen Ergebnis. Im Jahr 2019 haben rund 17.500 Unternehmen im Berichtskreis der Innovationserhebung (produzierendes Gewerbe und überwiegend unternehmensorientierte Dienstleistungen) KI in Produkten, Dienstleistungen oder internen Prozessen eingesetzt. Das sind 5,8 Prozent der Unternehmen im Berichtskreis.

Das KI-Observatorium

Mit dem Observatorium Künstliche Intelligenz in Arbeit und Gesellschaft (kurz: KI-Observatorium), einem Projekt der Denkfabrik Digitale Arbeitsgesellschaft, fokussiert das Bundesministerium für Arbeit und Soziales die Frage nach den Auswirkungen von KI auf Arbeit und Gesellschaft. Das KI-Observatorium agiert an der Schnittstelle zwischen Politik, Wissenschaft, Wirtschaft und Gesellschaft; es fungiert als Wissensträger und Impulsgeber. Das KI-Observatorium hat die Aufgabe, Effekte von KI in der Arbeitswelt frühzeitig zu antizipieren und Handlungsbedarfe aufzuzeigen. Auf diese Weise leistet die im März 2020 gestartete Arbeitseinheit einen Beitrag zur Realisierung der in der KI-Strategie der Bundesregierung formulierten Ziele – etwa zum sicheren und gemeinwohlorientierten Einsatz von KI. Darüber hinaus soll das KI-Observatorium mithilfe von Dialog- und Beteiligungsformaten unterschiedliche gesellschaftliche Akteure im Umgang mit künstlicher Intelligenz befähigen und bestärken.

Die konkreten Aufgabenschwerpunkte des Observatoriums sind in den fünf Handlungsfeldern festgehalten:

  1. Technologie-Foresight und Technikfolgenabschätzung
  2. KI in der Arbeits- und Sozialverwaltung
  3. Ordnungsrahmen für KI/soziale Technikgestaltung
  4. Aufbau internationaler und europäischer Strukturen
  5. Gesellschaftlicher Dialog und Vernetzung

Darstellung in Film und Literatur

Seit der Klassischen Moderne wird KI in Kunst, Film und Literatur behandelt. Dabei geht es bei der künstlerischen Verarbeitung – im Gegensatz zur KI-Forschung, bei der die technische Realisierung im Vordergrund steht – vor allem um die moralischen, ethischen und religiösen Aspekte und Folgen einer nicht-menschlichen, „maschinellen Intelligenz“.

In der Renaissance wurde der Begriff des Homunculus geprägt, eines künstlichen Miniaturmenschen ohne Seele. Im 18. und 19. Jahrhundert erschienen in der Literatur menschenähnliche Automaten, beispielsweise in E. T. A. Hoffmanns Der Sandmann und Jean Pauls Der Maschinenmann.

Im 20. und 21. Jahrhundert greift die Science-Fiction in Film und Prosa das Thema mannigfach auf. 1920 prägte der Schriftsteller Karel Čapek den Begriff „Roboter“ in seinem Bühnenstück R.U.R.; 1926 thematisierte Fritz Lang in Metropolis Roboter, welche die Arbeit der Menschen übernehmen.

Dem Filmpublikum wurden in den unterschiedlichen Werken die Roboter als intelligente und differenzierte Maschinen mit ganz unterschiedlichen Persönlichkeiten präsentiert: Sie werden entwickelt, um sie für gute Zwecke einzusetzen, wandeln sich aber häufig zu gefährlichen Maschinen, die feindselige Pläne gegen Menschen entwickeln. Im Lauf der Filmgeschichte werden sie zunehmend zu selbstbewussten Wesen, die sich die Menschheit unterwerfen wollen.

Beispiele (Auswahl Filme)

Beispiele (Auswahl Videospiele)

Soziale Auswirkungen

Im Zuge der industriellen Revolution wurde durch die Erfindung der Dampfmaschine die Muskelkraft von der Maschine ersetzt (PS durch Watt). Durch die digitale Revolution könnte die menschliche Denkleistung durch maschinelle KI ersetzt werden.

Der amerikanische Unternehmer Elon Musk prognostiziert, dass es zukünftig immer weniger Erwerbsarbeit geben werde, die nicht von einer Maschine besser und günstiger gemacht werden könne, weshalb immer weniger Arbeitskräfte benötigt würden. Durch die weitgehend maschinelle Produktion würden die Produkte und Dienstleistungen sehr billig werden. In diesem Zusammenhang unterstützt er die Einführung eines bedingungslosen Grundeinkommens. Der Physiker Stephen Hawking meinte: Bereits heute sei klar, dass die Maschinen die Menschen zunehmend vom Arbeitsmarkt verdrängen. Microsoft-Gründer Bill Gates sieht die Entwicklung ähnlich. Er fordert eine Robotersteuer, um die sozialen Aufgaben der Zukunft bewältigen zu können.

Die Informatikerin Constanze Kurz erklärte in einem Interview, technischen Fortschritt habe es schon immer gegeben. Jedoch vollzog sich der technische Wandel in der Vergangenheit meist über Generationen, so dass genug Zeit blieb, sich für neue Aufgaben auszubilden. Heute verlaufe der technische Wandel innerhalb von wenigen Jahren, so dass die Menschen nicht genug Zeit hätten, sich für neue Aufgaben weiterzubilden. Der Sprecher des Chaos Computer Clubs, Frank Rieger, warnte in verschiedenen Publikationen (z. B. dem Buch Arbeitsfrei) davor, dass durch die beschleunigte Automatisierung vieler Arbeitsbereiche in naher Zukunft immer mehr Menschen ihre Beschäftigung verlieren würden (z. B. LKW-Fahrer durch selbstfahrende Autos). Darin bestehe unter anderem eine Gefahr der Schwächung von Gewerkschaften, die an Mitgliedern verlieren könnten. Rieger plädiert daher für eine „Vergesellschaftung der Automatiserungsdividende“, also einer Besteuerung von nichtmenschlicher Arbeit, damit durch das Wachstum der Wirtschaft in Form eines Grundeinkommens auch der allgemeine Wohlstand wächst und gerecht verteilt wird.

Wissenschaftler der Universität Oxford haben in einer Studie im Jahr 2013 eine Vielzahl von Jobs auf ihre Automatisierbarkeit überprüft. Dabei unterteilten die Wissenschaftler die Jobs in verschiedene Risikogruppen. 47 Prozent der betrachteten Jobs in den USA wurden in die höchste Risikogruppe eingeteilt, d. h., dass für diese Jobs die Wahrscheinlichkeit hoch ist, dass innerhalb der nächsten ein oder zwei Jahrzehnte (Stand 2013) die nötige Technologie entwickelt wird, um sie automatisieren zu können. Die Studie macht jedoch keine Aussage dazu, wie viele Jobs tatsächlich automatisiert werden, da nur die technologischen Entwicklungen und keine weiteren Faktoren betrachtet werden. Ein solcher Faktor wäre zum Beispiel die Höhe der Kosten, also ob eine Automatisierung teurer wäre als das Gehalt für einen menschlichen Arbeiter.

Jürgen Schmidhuber antwortete auf die Frage, ob KIs uns bald den Rang ablaufen werden bzw. ob wir uns Sorgen um unsere Jobs machen müssten: „Künstliche Intelligenzen werden fast alles erlernen, was Menschen können – und noch viel mehr. Ihre neuronalen Netzwerke werden aus Erfahrung klüger und wegen der sich rasch verbilligenden Hardware alle zehn Jahre hundertmal mächtiger. Unsere formelle Theorie des Spaßes erlaubt sogar, Neugierde und Kreativität zu implementieren, um künstliche Wissenschaftler und Künstler zu bauen.“ und „Alle fünf Jahre wird das Rechnen 10-mal billiger. Hält der Trend an, werden kleine Rechner bald so viel rechnen können wie ein menschliches Gehirn, 50 Jahre später wie alle 10 Milliarden Hirne zusammen.“ Als Konsequenz aus der aus seiner Sicht unabwendbar fortschreitenden Automatisierung und dem damit einhergehenden Wegfall von Erwerbsarbeitsplätzen sieht Schmidhuber die Notwendigkeit eines Bedingungslosen Grundeinkommens. „Roboterbesitzer werden Steuern zahlen müssen, um die Mitglieder unserer Gesellschaft zu ernähren, die keine existenziell notwendigen Jobs mehr ausüben. Wer dies nicht bis zu einem gewissen Grad unterstützt, beschwört geradezu die Revolution Mensch gegen Maschine herauf.“

Erik Brynjolfsson ist der Auffassung, das Aufkommen radikaler Parteien in den USA und Europa sei die Folge davon, dass viele Menschen heute schon nicht mehr mit dem technischen Fortschritt mithalten könnten. Wenn Menschen ihre Jobs verlieren, werden diese Menschen wütend, so Brynjolfsson. Auch er meint, dass in Zukunft die meisten Jobs von Maschinen erledigt würden.

Mark Zuckerberg äußerte bei einer Rede vor Harvard-Absolventen, dass die Einführung eines bedingungslosen Grundeinkommens notwendig sei. Es könne etwas nicht mehr in Ordnung sein, wenn er als Harvard-Abbrecher innerhalb weniger Jahre Milliarden machen könne, während Millionen von Uni-Absolventen ihre Schulden nicht abbezahlen könnten. Es bräuchte eine Basis, auf der jeder innovativ und kreativ sein könne.

Im November 2017 stellte der Deutsche-Bank-Chef John Cryan einen starken Stellenabbau in Aussicht. Das Unternehmen beschäftigt 97.000 Menschen. Bereits in den letzten 12 Monaten wurden 4.000 Stellen abgebaut. In naher Zukunft sollen 9.000 weitere Stellen abgebaut werden. Mittelfristig sollen die Hälfte aller Stellen abgebaut werden. Cryan begründete diesen Schritt damit, dass die Konkurrenz bereits heute mit etwa der Hälfte der Mitarbeiter vergleichbare Leistung erbringe. Cryan sagte: „Wir machen zu viel Handarbeit, was uns fehleranfällig und ineffizient macht“. Vor allem durch das maschinelle Lernen bzw. künstliche Intelligenzen könnte das Unternehmen noch viel effizienter werden. Viele Banker arbeiteten ohnehin wie Roboter, so Cryan. An die Stelle qualifizierter Mitarbeiter sollen qualifizierte Maschinen treten, so Cryan.

Der Zukunftsforscher Lars Thomson prognostizierte im November 2017 für die nächsten 10 Jahre gewaltige Umbrüche in Technologie, Arbeit, Werten und Gesellschaft. Im Jahr 2025 könne ein Haushalts-Roboter den Frühstückstisch decken, Fenster putzen, Pflegedienste übernehmen usw. wodurch Arbeitsplätze vernichtet würden. Heute schon gebe es 181 Firmen weltweit, die an klugen Robotern arbeiten. Der Preis eines solchen Roboters betrage heute etwa 20.000 Euro. Der Markt der künstlichen Intelligenz werde in wenigen Jahren größer sein als der Automobilmarkt. Wie schnell 10 Jahre vergingen, würde man sehen, wenn man 10 Jahre zurückblicke, als das erste Smartphone auf den Markt kam. Er bedauert, dass in unserer Gesellschaft kaum jemand diese Entwicklung erkenne, die unsere Gesellschaft komplett verändern werde. In Hotels würden in 10 Jahren Roboter die Arbeiten der heutigen Zimmermädchen übernehmen. Der Vorteil für den Hotelmanager: Der Roboter wolle keinen Lohn, keine freien Tage, müsse nicht versteuert und versichert werden. Der Nachteil: Der Staat erhalte keine Steuern mehr und die Menschen seien arbeitslos. Deshalb werde man nicht an einem bedingungslosen Grundeinkommen und der Einführung einer Robotersteuer vorbeikommen. Thomson sieht die Gefahr einer Spaltung der Gesellschaft, wenn das Tempo der Veränderung die Wandlungsfähigkeit der Menschen übersteige. Gleichzeitig werde die KI den Menschen von der Arbeit befreien. Die Gesellschaft müsse Leitplanken für die KIs definieren.

In einem Interview im Januar 2018 meinte der CEO von Google Sundar Pichai, die aktuelle Entwicklung der künstlichen Intelligenz sei für den Werdegang der Menschheit bedeutender als es die Entdeckung des Feuers und die Entwicklung der Elektrizität waren. Durch die aktuelle Entwicklung der KI werde kein Stein auf dem anderen bleiben. Deshalb sei es wichtig, dass die Gesellschaft sich mit dem Thema auseinandersetze. Nur so könne man die Risiken eingrenzen und die Potentiale ausschöpfen. Google gehört derzeit zu den führenden Unternehmen im Bereich der KI. Allein der KI-Assistent von Google ist bereits auf hunderten Millionen Android-Smartphones installiert. Aber auch in den Suchmaschinen kommt KI derzeit bereits milliardenfach zum Einsatz. Die von Google gekaufte Firma DeepMind eilt bei der KI-Forschung von Meilenstein zu Meilenstein u. a. mit AlphaGo, AlphaGo Zero, AlphaZero.

Das Institut für Arbeitsmarkt- und Berufsforschung (IAB), das zur Bundesagentur für Arbeit gehört, hat in einer Studie von 4/2018 dargelegt, welche menschliche Arbeit in Deutschland von Maschinen ersetzt werden kann. Die Studie kommt zum Ergebnis, dass im Jahr 2016 25 Prozent der bezahlten menschlichen Tätigkeiten von Maschinen hätten erledigt werden können, was etwa 8 Millionen Arbeitsplätzen in Deutschland entspricht. Eine frühere Studie kam für das Jahr 2013 noch auf einen Wert von 15 Prozent. Am stärksten betroffen mit etwa 83 Prozent sind Fertigungsberufe, aber auch unternehmensbezogene Dienstleistungsberufe mit 60 Prozent, Berufe in der Unternehmensführung und -organisation mit 57 Prozent, Berufe in Land- und Forstwirtschaft und Gartenbau mit 44 Prozent usw. Im Vergleich von 2013 zu 2016 sind besonders stark Logistik- und Verkehrsberufe gestiegen (von 36 auf 56 Prozent), ein Bereich, in dem in Deutschland etwa 2,4 Millionen Menschen beschäftigt sind. Insgesamt geht die Studie davon aus, dass in naher Zukunft 70 Prozent der menschlichen bezahlten Tätigkeiten von Maschinen übernommen werden könnten. Maschinen könnten z. B. übernehmen: Wareneingangskontrolle, Montageprüfung, Kommissionierung, Versicherungsanträge, Steuererklärungen usw. Die Techniken, die diese Veränderungen vorantreiben, seien: künstliche Intelligenzen, Big Data, 3D-Druck und virtuelle Realität. Auch wenn es nicht zu Entlassungen komme, müssten Mitarbeiter zumindest mit starken Veränderungen in ihrem Berufsbild und damit starkem Umlernen rechnen. Es entstünden auch neue Berufsfelder. Auch werde nicht alles, was heute schon möglich ist, auch umgesetzt und schon gar nicht sofort. Ein Faktor für diese Verzögerung seien ethische und rechtliche Aspekte, aber auch die hohen Kosten der Automatisierung. Nicht immer sei die künstliche Intelligenz billiger als die menschliche Intelligenz.

In einem Gastbeitrag im Februar 2018 meinte der SAP-Chef Bill McDermott, dass sich die Menschen fürchten würden vor den Veränderungen, die eine Welt mit Robotern und KIs mit sich bringt. Ein erster Meilenstein sei der Sieg der Maschine Deep Blue über den amtierenden Schachweltmeister Gary Kasparov im Jahr 1997 gewesen. Ein weiterer Meilenstein sei der Sieg der Maschine Watson über den Menschen in der Quiz-Show Jeopardy im Jahr 2011 gewesen. Und der nächste große Schritt waren dann die Siege von AlphaGo und seinen Nachfolgern AlphaGo Zero und AlphaZero im Jahr 2016 und 2017. Die tiefgreifenden Veränderungen, die KI auch am Arbeitsplatz mit sich bringen würden, seien heute nun in aller Munde. Um etwaige negative Auswirkungen der neuen Techniken auf die Gesellschaft zu vermeiden, brauche es nun eine durchdachte Planung. Behörden, Privatwirtschaft und Bildungswesen müssten zusammenarbeiten, um jungen Menschen die Fähigkeiten zu vermitteln, die diese in der digitalen Wirtschaft benötigten. Umschulungen und lebenslanges Lernen seien heute die neue Normalität. Jobs würden nicht komplett von Maschinen ersetzt, sondern meist in Teilbereichen. Es entstünden auch viele neue Jobs. Die wirtschaftliche Entwicklung werde durch die KI befeuert. Man rechne für 2030 mit einer Wertschöpfung im Bereich von 16 Billionen US-Dollar und einem Wachstum des Bruttoinlandsprodukts um 26 Prozent. Durch die Automatisierung könnten Unternehmen zukünftig jährlich 3 bis 4 Billionen US-Dollar einsparen.

Konferenzen zu Künstlicher Intelligenz

Filmische Dokumentationen

Literatur

  • Ingo Boersch, Jochen Heinsohn, Rolf Socher: Wissensverarbeitung – Eine Einführung in die Künstliche Intelligenz. Elsevier, 2006, ISBN 3-8274-1844-5.
  • Stefan Buijsman: Ada und die Algorithmen. Wahre Geschichten aus der Welt der künstlichen Intelligenz. C.H.Beck, München 2021, ISBN 978-3-406-77563-5 (236 S., niederländisch: AI – Alsmaar intelligenter. Een kijkjeachter de beeldschermen. Amsterdam 2020. Übersetzt von Bärbel Jänicke).
  • Ulrich Eberl: Smarte Maschinen: Wie Künstliche Intelligenz unser Leben verändert. Carl Hanser Verlag, München 2016, ISBN 978-3-446-44870-4.
  • Wolfgang Ertel: Grundkurs Künstliche Intelligenz: Eine praxisorientierte Einführung. 3. Auflage. Springer Vieweg, 2013, ISBN 978-3-8348-1677-1.
  • Görz, Rollinger, Schneeberger (Hrsg.): Handbuch der Künstlichen Intelligenz. 5. Auflage. Oldenbourg, 2013, ISBN 978-3-486-71979-6.
  • Künstliche Intelligenz : Die Revolution der Roboter. Bild der Wissenschaft Sommer 2019, 99 Seiten, Konradin Mediengruppe, ISSN 0006-2375.
  • Uwe Lämmel, Jürgen Cleve: Künstliche Intelligenz. 3. Auflage. Carl Hanser Verlag, München 2008, ISBN 978-3-446-41398-6.
  • Manuela Lenzen: Künstliche Intelligenz. Was sie kann und was uns erwartet. Verlag C.H. Beck, München 2018, ISBN 978-3-406-71869-4.
  • Nils Nilsson: The quest for artificial intelligence. A history of ideas and achievements. Cambridge UP, 2010. Deutschsprachige Ausgabe: Nils J. Nilsson: Die Suche nach Künstlicher Intelligenz – Eine Geschichte von Ideen und Erfolgen. 1. Auflage. AKA, Berlin 2014, ISBN 978-3-89838-665-4 (eingeschränkte Vorschau in der Google-Buchsuche).
  • Roger Penrose: Schatten des Geistes. Wege zu einer neuen Physik des Bewußtseins. Übersetzung aus dem Englischen Shadows of the Mind. Heidelberg 1995.
  • Rolf Pfeifer, Christian Scheier, Alex Riegler: Understanding Intelligence. Bradford Books, 2001, ISBN 0-262-66125-X.
  • David L. Poole, Alan K. Mackworth: Artificial Intelligence: Foundations of Computational Agents. 2. Auflage. Cambridge University Press, 2017, ISBN 978-1-107-19539-4.
  • Thomas Ramge: Mensch und Maschine. Wie Künstliche Intelligenz und Roboter unser Leben verändern. Reclam-Verlag, Stuttgart 2018, ISBN 978-3-15-019499-7.
  • Stuart J. Russell, Peter Norvig: Künstliche Intelligenz: Ein moderner Ansatz. Pearson Studium, 2004, ISBN 3-8273-7089-2. (Originaltitel: „Artificial Intelligence: A Modern Approach“, deutsche Übersetzung der 2. Auflage)
  • Anna Strasser, Wolfgang Sohst, Ralf Stapelfeldt, Katja Stepec (Hg.): Künstliche Intelligenz - Die große Verheißung Xenomoi, Berlin 2021, ISBN 978-3-942106-79-5
  • Bernd Vowinkel: Maschinen mit Bewusstsein – Wohin führt die künstliche Intelligenz? Wiley-VCH, 2006, ISBN 3-527-40630-1.
  • Joseph Weizenbaum: Die Macht der Computer und die Ohnmacht der Vernunft. 12. Auflage. Suhrkamp, 1978, ISBN 3-518-27874-6.
  • Emmanouil Billis, Nandor Knust und Jon-Petter Rui: Künstliche Intelligenz und der Grundsatz der Verhältnismäßigkeit, in M. Engelhart, H. Kudlich and B. Vogel (Hrsg.), Digitalisierung, Globalisierung und Risikoprävention – Festschrift für Ulrich Sieber zum 70. Geburtstag, Teilband II. Berlin, Duncker & Humblot, 2021, S. 693–725, ISBN 978-3-428-15971-0
Audio

Deutsch

Englisch

Einzelnachweise

  1. Pamela McCorduck: Machines Who Think. 2nd ed., A. K. Peters, Ltd., Natick, MA 2004, ISBN 1-56881-205-1, S. 423; Deutsche Ausgabe: Denkmaschinen : die Geschichte der künstlichen Intelligenz, Markt und Technik 1987.
  2. 1 2 Nils J. Nilsson: The Quest for Artificial Intelligence. A History of Ideas and Achievements. Cambridge University Press, New York 2009. (amerikanisches Englisch)
  3. A PROPOSAL FOR THE DARTMOUTH SUMMER RESEARCH PROJECT ON ARTIFICIAL INTELLIGENCE. 30. September 2008, abgerufen am 3. Mai 2023 (amerikanisches Englisch).
  4. 1 2 Lexikon der Neurowissenschaften: Künstliche Intelligenz. In: Spektrum der Wissenschaft. Abgerufen am 18. Juli 2021.
  5. Künstliche Intelligenz. (PDF) In: https://www.dfki.de/. Bitkom e. V. und Deutsches Forschungszentrum für künstliche Intelligenz, 2017, S. 28, abgerufen am 18. Juli 2021.
  6. Microsoft erklärt: Was ist künstliche Intelligenz? Definition & Funktionen von KI | News Center Microsoft. 4. März 2020, abgerufen am 18. Juli 2021 (deutsch).
  7. Was ist künstliche Intelligenz und wie wird sie genutzt? | Aktuelles | Europäisches Parlament. 14. September 2020, abgerufen am 18. Juli 2021.
  8. Nick Bostrom: Superintelligenz. Szenarien einer kommenden Revolution. Suhrkamp, 2016, S. 42.
  9. Nick Bostrom: Superintelligenz. Szenarien einer kommenden Revolution. Suhrkamp, Frankfurt am Main. 2016, S. 50 f.
  10. Daniela Hernandez: Microsoft Challenges Google’s Artificial Brain With ‘Project Adam’. In: Wired. 14. Juli 2014, abgerufen am 5. August 2014 (englisch).
  11. Jeff Hawkins, Sandra Blakeslee: On Intelligence. Owl Books, 2005, ISBN 0-8050-7853-3, S. 89.
  12. Mark A. Bedau: Artificial life: organization, adaptation and complexity from the bottom up. In: Department of Philosophy, ReedCollege, 3023 SE Woodstock Blvd., Portland OR 97202, USA (Hrsg.): Trends in Cognitive Sciences. Band 7, Nr. 11. Portland, OR, USA November 2003 (reed.edu [PDF; abgerufen am 12. März 2019]).
  13. Wolfgang Banzhaf, Barry McMullin: Artificial Life. In: Grzegorz Rozenberg, Thomas Bäck, Joost N. Kok (Hrsg.): Handbook of Natural Computing. Springer, 2012, ISBN 978-3-540-92909-3.
  14. Marco Lippi, Paolo Torroni: Argumentation Mining: State of the Art and Emerging Trends. In: ACM Transactions on Internet Technology. Band 16, Nr. 2, 20. April 2016, ISSN 1533-5399, S. 1–25, doi:10.1145/2850417 (acm.org [abgerufen am 11. März 2021]).
  15. Künstliche Intelligenz revolutioniert die Astronomie. science.ORF.at, 15. Dezember 2017, abgerufen am 12. März 2019.
  16. Lukas Staffler, Oliver Jany: Künstliche Intelligenz und Strafrechtspflege - eine Orientierung. In: Zeitschrift für Internationale Strafrechtsdogmatik. Band 2020, S. 164177 (zis-online.com [PDF]).
  17. Sascha Mattke: Künstliche Intelligenz verdrängt menschliche Arbeit in juristischen Berufen. Technology Review, 20. Dezember 2017, abgerufen am 12. März 2019. heise.de vom 20. Dezember 2017.
  18. Ronen Bergman, Farnaz Fassihi: The Scientist and the A.I.-Assisted, Remote-Control Killing Machine. In: The New York Times. 18. September 2021, ISSN 0362-4331 (archive.org [abgerufen am 14. Juli 2023]).
  19. Wie Künstliche Intelligenz den Krieg in der Ukraine mit entscheidet | ZDFheute live. Abgerufen am 24. Juli 2023 (deutsch).
  20. Zur Lage der militärischen KI in Deutschland. Abgerufen am 24. Juli 2023 (deutsch).
  21. Tucker "Cinco" Hamilton, head of the AI Test and Operations
  22. Bernd Mewes: KI-gesteuertes Marketing: Zalando streicht 250 Arbeitsplätze. In: Heise online. 10. März 2018. Abgerufen am 13. März 2018.
  23. Klaus Breuer: Computerspiele programmieren: Künstliche Intelligenz für künstliche Gehirne. Oldenbourg Wissenschaftsverlag, München 2012, ISBN 978-3-486-71789-1.
  24. Matthias Kreienbrink: Künstliche Intelligenz: Das Spiel weiß, was du tun wirst. In: Zeit Online. 11. Dezember 2017 (zeit.de [abgerufen am 16. März 2018]).
  25. Künstliche Intelligenz in Spielen: Die KI ist so intelligent wie ihre Entwickler. In: Golem.de. (golem.de [abgerufen am 16. März 2018]).
  26. Georgios N. Yannakakis, Julian Togelius: Artificial Intelligence and Games. 2018, doi:10.1007/978-3-319-63519-4 (springer.com [abgerufen am 22. Dezember 2018]).
  27. Stefan Parsch: Vergesst AlphaGo – der neue Held heißt AlphaZero. In: DIE WELT. 6. Dezember 2018 (welt.de [abgerufen am 22. September 2020]).
  28. Jörg Breithut: Künstliche Intelligenz AlphaZero: In vier Stunden zum Schachweltmeister. In: Spiegel Online. 8. Dezember 2017 (spiegel.de [abgerufen am 16. März 2018]).
  29. Jonas Jansen: Googles Künstliche Intelligenz: Deepmind schlägt jetzt auch professionelle Computerspieler. In: FAZ.NET. ISSN 0174-4909 (faz.net [abgerufen am 27. September 2020]).
  30. Künstliche Intelligenz lernt „Mario Kart“ von älterem Herren. Abgerufen am 16. März 2018.
  31. The Physics arXiv Blog: Neural Net Learns Breakout Then Thrashes Human Gamers. In: Medium. 23. Dezember 2013, abgerufen am 16. März 2018.
  32. A video game-playing AI beat Q*bert in a way no one’s ever seen before. In: The Verge. (theverge.com [abgerufen am 16. März 2018]).
  33. Eike Kühl: Künstliche Intelligenz: Jetzt besiegt sie auch noch Profigamer. In: Zeit Online. 19. August 2017 (zeit.de [abgerufen am 16. März 2018]).
  34. Dainius: New Neural Algorithm Can ‘Paint’ Photos In Style Of Any Artist From Van Gogh To Picasso. boredpanda.com, 2016, abgerufen am 12. März 2019 (englisch).
  35. Alyssa Buffenstein: Google’s Artificial Brain Creates Its Own Artworks and They Are Freaky. news.artnet.com/art-world/, 22. Juni 2015, abgerufen am 12. März 2019 (englisch).
  36. Sarah Cascone: Google’s ‘Inceptionism’ Art Sells Big at San Francisco Auction. news.artnet.com/, 2. März 2016, abgerufen am 12. März 2019 (englisch).
  37. Christian Gall: Können Computer auch Kunst erzeugen? Abgerufen am 25. Februar 2020.
  38. Claire Voon: Humans Prefer Computer-Generated Paintings to Those at Art Basel. hyperallergic.com/, 31. Juli 2017, abgerufen am 12. März 2019 (englisch).
  39. 1 2 Katerina Cizek, William Uricchio, Sarah Wolozin: PART 6: MEDIA CO-CREATION WITH NON-HUMAN SYSTEMS. In: Collective Wisdom. PubPub, 3. Juni 2019 (mit.edu [abgerufen am 14. Februar 2020]).
  40. Filmfestival Venedig – Neue Fellini-Fantasien dank künstlicher Intelligenz. Abgerufen am 31. Oktober 2021.
  41. Campari torna alla 78. Mostra Internazionale d’Arte Cinematografica - La Biennale di Venezia. Abgerufen am 31. Oktober 2021 (italienisch).
  42. FAZ.net mit DPA: Christie’s verkauft KI-Kunst: min G max D Ex[log(D(x))]+Ez[log(1-D(G(z)))] hat was gemalt. In: FAZ.NET. ISSN 0174-4909 (faz.net [abgerufen am 12. Februar 2020]).
  43. DER SPIEGEL: Christie's erzielt mit KI-Gemälde 432.500 Dollar - DER SPIEGEL - Netzwelt. Abgerufen am 12. Februar 2020.
  44. Alexander Armbruster: Computer schreibt sechstes Buch von Game of Thrones. faz.net, 30. August 2017, abgerufen am 12. März 2019.
  45. 1 2 Schmidhuber: «Unsere Roboter zeigen Gefühle» 1. Oktober 2017.
  46. Drehbuch geschrieben von KI: Sunsspring. A Sci-Fi Short Film Starring Thomas Middleditch. video Sunspring, 9. Juni 2016, abgerufen am 12. März 2019 (englisch).
  47. Tomislav Bezmalinovic: Google will Computern das Komponieren und Witzemachen beibringen. (Nicht mehr online verfügbar.) Mixed Reality News & Podcast, 4. September 2017, archiviert vom Original am 4. Januar 2019; abgerufen am 12. März 2019.
  48. Vera Bauer: Google Magenta-Team veröffentlicht erstes KI-komponiertes Musikstück. mobilegeeks.de, 4. Juni 2016, abgerufen am 12. März 2019.
  49. Mit künstlicher Intelligenz kann jeder komponieren deutschlandfunkkultur.de vom 21. Dezember 2017.
  50. KI will rock you zeit.de vom 26. Dezember 2017.
  51. Künstliche Intelligenz kann jetzt auch Pop (na ja, fast) gruenderszene.de vom 8. Februar 2018.
  52. Uraufführung in Bonn: Künstliche Intelligenz vollendet die 10. Sinfonie von Beethoven. In: FAZ.NET. ISSN 0174-4909 (faz.net [abgerufen am 11. Oktober 2021]).
  53. Michael Spehr: Midjourney: Bildgeneratoren mit KI erzeugen Fotos, die es nicht gibt. In: FAZ.NET. 20. März 2023, ISSN 0174-4909 (faz.net [abgerufen am 28. Mai 2023]).
  54. Patrick Beuth, Theresa Locker, Gerret von Nordheim, Carola Padtberg: (S+) Text-zu-Bild-Generatoren: Wie künstliche Intelligenz die Kreativwelt revolutioniert. In: Der Spiegel. 11. November 2022, ISSN 2195-1349 (spiegel.de [abgerufen am 28. Mai 2023]).
  55. Michael Spehr: Midjourney: Bildgeneratoren mit KI erzeugen Fotos, die es nicht gibt. In: FAZ.NET. 20. März 2023, ISSN 0174-4909 (faz.net [abgerufen am 26. Mai 2023]).
  56. KI-Bild-Schöpfer erklärt: So kam es zum Papst-Fakefoto. 28. März 2023, abgerufen am 26. Mai 2023.
  57. https://www.facebook.com/stern: Ein Bild des Papstes geht viral – und zeigt, warum wir unseren Augen schon jetzt nicht mehr trauen können. 28. März 2023, abgerufen am 26. Mai 2023.
  58. KI-Fake: Warum das Papst-Foto nicht nur witzig ist. 27. März 2023, abgerufen am 26. Mai 2023.
  59. Roland Lindner, New York: Explosion am Pentagon: Wurde das Bild mit KI gefälscht? In: FAZ.NET. 23. Mai 2023, ISSN 0174-4909 (faz.net [abgerufen am 26. Mai 2023]).
  60. Süddeutsche Zeitung: Kunst per Algorithmus: Christie's versteigert KI-Gemälde. Abgerufen am 14. Februar 2020.
  61. Uraufführung in Bonn: Künstliche Intelligenz vollendet die 10. Sinfonie von Beethoven. In: FAZ.NET. ISSN 0174-4909 (faz.net [abgerufen am 4. November 2021]).
  62. Tim W. Dornis: Der Schutz künstlicher Kreativität im Immaterialgüterrecht. Hrsg.: Joachim Bornkamm, Ansgar Ohly. GRUR 2019, 1252. Beck-Verlag.
  63. Katharina Cichosch, DER SPIEGEL: KI-Design: Diesen Stuhl hat ein Computer entworfen (mit Hilfe von Designstar Philippe Starck) - DER SPIEGEL - Stil. Abgerufen am 17. Februar 2020.
  64. Werner Pluta: Nasa läßt KI-Software Raumfahrtkomponenten entwerfen. In: golem.de. 16. Februar 2023, abgerufen am 20. Februar 2023.
  65. Melanie Keim: «Die künstliche Intelligenz wird bald auf die Schulen zukommen». In: PHZH Akzente. Pädagogische Hochschule Zürich, 27. Mai 2019, abgerufen am 22. Dezember 2022 (deutsch).
  66. Eine personalisierte KI lehrt Fremdsprachen auf Gesprächsniveau. In: CORDIS - Forschungsergebnisse der EU. Europäische Kommission, 20. März 2020, abgerufen am 22. Dezember 2022.
  67. Whitepaper über selbstreguliertes Lernen (SRL) in der Lernsoftware Brainix. Abgerufen am 22. Dezember 2022.
  68. deutschlandfunk.de: Großbritannien - Keine Notenvergabe per KI. Abgerufen am 22. Dezember 2022.
  69. Whitepaper Künstliche Intelligenz in der Hochschulbildung. In: Claudia de Witt, Florian Rampelt und Niels Pinkwart (Hrsg.): KI in der Hochschulbildung. 2020 (ki-campus.org [PDF]).
  70. NASA Harvest
  71. Copernicus Land Monitoring Service
  72. Open Climate Fix
  73. Priya Donti, Lynn Kaack, David Rolnick und Emma Strubell: Künstliche Intelligenz und Klimawandel Wie KI mit den Klimaschutzzielen vereinbart werden kann (PDF), Berlin, Mai 2021, Creative-Commons-Lizenz CC-BY-NC-SA 4.0
  74. Institut für Arbeitsmarkt- und Berufsforschung (IAB): Veränderungen der Arbeitswelt durch künstliche Intelligenz. (abgerufen am 10. Juli 2022)
  75. Tiana Zoric: Kann eine Künstliche Intelligenz den deutschen Nahverkehr retten? Abgerufen am 28. Mai 2023.
  76. Alan Turing: Computing Machinery and Intelligence. Aus: Mind No. 236. Oktober 1950.
  77. Roboter müssen Steuern zahlen Interview mit Jürgen Schmidhuber In: wiwo.de, 31. Januar 2016.
  78. Stevan Harnad: The Symbol Grounding Problem. In: Physica D. 42, 1990, S. 335–346.
  79. Franz-Josef Hücker: Die Pygmalion-Mythologie in der Psychotherapie. In: Psychotherapie Forum. Vol. 16, Nr. 3, 2008, (Springer), (Wien), S. 128–135.
  80. Nora Saskia Görg et al.: Predicting dropout in patients receiving Dialectical Behavior Therapy. Abgerufen am 27. August 2018 (englisch).
  81. Vgl. Hubert Dreyfus: In-der-Welt-sein und Weltlichkeit: Heideggers Kritik des Cartesianismus. In: Thomas Rentsch: Sein und Zeit. Akademie Verlag, Berlin 2001, S. 69ff.
  82. heise online: Wenn Computer über Leben und Tod entscheiden: Wer haftet, wenn die KI tötet? Abgerufen am 20. März 2018 (deutsch).
  83. Tanja Oppelt: Ethikkommission stellt in Berlin Ergebnisse vor: Selbstfahrende Autos und die Moral. Bayerischer Rundfunk, 20. Juni 2017; abgerufen am 20. August 2019.
  84. Christoph Stockburger: Autonomes Fahren: Was soll Ihr Auto jetzt tun? Spiegel Online, 29. August 2016; abgerufen am 20. März 2018.
  85. Thomas Weiß, Künstliche Intelligenz - eine marxistische Betrachtung. In: Anna Strasser, Wolfgang Sohst, Ralf Stapelfeldt, Katja Stepec (Hg.): Künstliche Intelligenz - Die große Verheißung Xenomoi, Berlin 2021. S. 379–405.
  86. Alexander Kriebitz und Christoph Lütge: Artificial Intelligence and Human Rights: A Business Ethical Assessment Business and Human Rights Journal, Januar 2020; abgerufen am 28. Juli 2020.
  87. David Kaye: Report of the Special Rapporteur to the General Assembly on AI and its impact on freedom of opinion and expression OHCHR, Januar 2020; abgerufen am 28. Juli 2020.
  88. 1 2 Hilal Kalafat: Physiker warnt vor künstlicher Intelligenz. In: Handelsblatt. 3. Dezember 2014.
  89. 1 2 Stephen Hawking warnt vor Künstlicher Intelligenz (Memento vom 18. Juli 2015 im Webarchiv archive.today)
  90. Rory Cellan-Jones: Stephen Hawking – will AI kill or save humankind? In: BBC News. 20. Oktober 2016 (bbc.com [abgerufen am 28. Oktober 2018]).
  91. Elon Musk und 116 Experten fordern Verbot von Killer-Robotern, t3n.de.
  92. Elon Musk und Co. warnen vor Killer-Robotern, faz.net.
  93. Gero von Randow: Künstliche Intelligenz: Zu intelligent fürs Leben. In: Die Zeit. 14. September 2017, abgerufen am 27. September 2017.
  94. 1 2 3 Miles Brundage, Shahar Avin, Jack Clark, Helen Toner, Peter Eckersley, Ben Garfinkel, Allan Dafoe, Paul Scharre, Thomas Zeitzoff, Bobby Filar, Hyrum Anderson, Heather Roff, Gregory C. Allen, Jacob Steinhardt, Carrick Flynn, Seán Ó hÉigeartaigh, Simon Beard, Haydn Belfield, Sebastian Farquhar, Clare Lyle, Rebecca Crootof, Owain Evans, Michael Page, Joanna Bryson, Roman Yampolskiy, Dario Amodei: The Malicious Use of Artificial Intelligence. (PDF) Centre of the Study for Existential Risk, 20. Februar 2018, abgerufen am 9. März 2018 (englisch).
  95. Gabor Kiss: Yuval Noah Harari: „Verlierer wird die Menschheit sein“. In: euronews. 14. Mai 2019, abgerufen am 15. November 2020.
  96. Roboter können keine Moral. Warum das Gerede von superintelligenten, allmächtigen Maschinen nur ein großes Ablenkungsmanöver ist. In: Die Zeit, 18. Juni 2020, S. 32.
  97. Chris Köver: KI-Forscherin Timnit Gebru - Tausende Google-Angestellte protestieren nach Rauswurf. In: Netzpolitik.org. 9. Dezember 2020, abgerufen am 23. Dezember 2021 (deutsch).
  98. Peter Dabrock: Wir sollten auf klassische Bildung setzen. In: Aufbruch Künstliche Intelligenz - Was sie bedeutet und wie sie unser Leben verändert. Google LLC, SZ Scala GmbH, 2018, S. 34.
  99. Lisa Brüssler: Deutscher Bundestag - Enquete-Kommission zur künstlichen Intelligenz eingesetzt. In: Deutscher Bundestag. (bundestag.de [abgerufen am 6. September 2018]).
  100. Deutscher Bundestag - Enquete-Kommission „Künstliche Intelligenz“. (Nicht mehr online verfügbar.) Archiviert vom Original am 31. Oktober 2020; abgerufen am 19. November 2022.
  101. Elon Musk, Yoshua Bengio und Hunderte von Unterzeichnern für Pause beim KI-Training, Bernd Müller in Telepolis, 31. März 2023
  102. PwC: Künstliche Intelligenz in Unternehmen. 2019 (pwc.de [PDF]).
  103. Bundesministerium für Wirtschaft und Energie: Einsatz von Künstlicher Intelligenz in der Deutschen Wirtschaft. Abgerufen am 22. Juni 2020.
  104. KI-Observatorium. In: Denkfabrik Digitale Arbeitsgesellschaft. Bundesministerium für Arbeit und Soziales (BAMS), abgerufen am 2. April 2023.
  105. Die 5 Handlungsfelder des KI-Observatoriums. (Nicht mehr online verfügbar.) Archiviert vom Original am 25. Juni 2020; abgerufen am 22. Juni 2020.
  106. Lisa Xanke, Elisabeth Bärenz: Künstliche Intelligenz in Literatur und Film – Fiktion oder Realität?, Online-Artikel der Universität Karlsruhe, abgerufen am 20. Juli 2012, S. 1.
  107. Xanke, Bärenz, S. 37.
  108. 1 2 Xanke, Bärenz, S. 38.
  109. 1 2 Xanke, Bärenz, S. 39.
  110. ARD Quarks und Co: Außer Kontrolle - Wenn Computer die Macht übernehmen, 2016, Minute 16:30, 6. September 2016 (Seite nicht mehr abrufbar, festgestellt im Mai 2023. Suche in Webarchiven.)
  111. video: Interview with Elon Musk: Elon Musk says Universal Basic Income is “going to be necessary.” 19. Februar 2017.
  112. Elon Musk: Bedingungsloses Grundeinkommen ist unvermeidlich 19. Februar 2017.
  113. ARD alpha: Constanze Kurz: Die totale Automatisierung, 2014
  114. Frank Rieger, Constanze Kurz: Arbeitsfrei: Eine Entdeckungsreise zu den Maschinen, die uns ersetzen.
  115. Frank Rieger: Roboter müssen unsere Rente sichern. In: FAZ, 18. Mai 2012.
  116. The Future Of Employment: How Susceptible Are Jobs To Computerisation? (PDF; 1,1 MB) oxfordmartin.ox.ac.uk, 17. September 2013.
  117. Presseagentur APA/sda: Roboter-Forscher befürwortet bedingungsloses Grundeinkommen. In: diepresse.com, 15. Januar 2017; abgerufen am 7. April 2017.
  118. Jürgen Schmidhuber: Wir müssen Roboter erziehen wie Kinder. Interview durch Vinzenz Greiner, 15. Januar 2017.
  119. ARD Quarks und Co: Außer Kontrolle - Wenn Computer die Macht übernehmen, 2016, Minute Minute 16:50 und 19:30, 6. September 2016 (Seite nicht mehr abrufbar, festgestellt im Mai 2023. Suche in Webarchiven.)
  120. Mark Zuckerberg erklärt, warum jeder ein bedingungsloses Grundeinkommen erhalten sollte. (Memento vom 12. Oktober 2017 im Internet Archive) businessinsider.de, 26. Mai 2017; abgerufen am 15. Oktober 2017.
  121. Mark Zuckerberg’s Commencement address at Harvard. news.harvard.edu, 25. November 2017; abgerufen am 15. Oktober 2017.
  122. Maschinen statt Mitarbeiter: Deutsche-Bank-Chef stellt erheblichen Stellenabbau in Aussicht. faz.net, 9. November 2017; abgerufen am 10. November 2017.
  123. Forscher sagt dramatischen Wandel voraus (Seite nicht mehr abrufbar, festgestellt im Mai 2023. Suche in Webarchiven.)
  124. Matthias Bastian: Google-Chef: Künstliche Intelligenz „wichtiger als Feuer und Elektrizität“ (Memento vom 23. Januar 2018 im Internet Archive), vrodo.de vom 20. Januar 2018.
  125. Arbeitsmarkteffekte der Digitalisierung bis 2035, iab.de von 4/2019
  126. Diese Jobs sind besonders von Robotern bedroht, welt.de vom 16. Februar 2018.
  127. SAP-Chef McDermott: KI bringt bald Billionen-Umsätze (auf produktion.de vom 26. Februar 2018) (Seite nicht mehr abrufbar, festgestellt im Mai 2023. Suche in Webarchiven.)
  128. Andrian Kreye: Sachbuch zu Künstlicher Intelligenz. Abgerufen am 22. Januar 2022.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.