Ein Quantenpunkt (englisch quantum dot, QD) ist eine nanoskopische Materialstruktur, meist aus Halbleitermaterial (z. B. InGaAs, CdSe oder auch GaInP/InP). Ladungsträger (Elektronen, Löcher) in einem Quantenpunkt sind in ihrer Beweglichkeit in allen drei Raumrichtungen so weit eingeschränkt, dass ihre Energie nicht mehr kontinuierliche, sondern nur noch diskrete Werte annehmen kann, wodurch Quantenpunkte mit einzelnen Atomen vergleichbare Quanteneffekte zeigen (siehe auch Effekt der Dimensionsreduktion). Das Spektrum eines Quantenpunkts gleicht dem eines Atoms, allerdings können beispielsweise Form, Größe und Zusammensetzung von Quantenpunkten oder ihr Ladungszustand (Anzahl der darin gefangenen Elektronen) beeinflusst werden. Dadurch lassen sich elektronische und optische Eigenschaften von Quantenpunkten maßschneidern. Je nach Herstellungsmethode besteht ein einzelner Quantenpunkt aus etwa 104 bis 106 Atomen.
Gelingt es, mehrere einzelne Quantenpunkte in unmittelbarer Nähe zueinander anzuordnen, so dass Ladungsträger (v. a. Elektronen) über kohärente Tunnelprozesse von einem in den nächsten Quantenpunkt gelangen können, so spricht man von Quantenpunktmolekülen.
Quantenpunkte können aus verschiedenen Materialien hergestellt werden, einschließlich Halbleitern, Metallen und organischen Molekülen. Die Eigenschaften eines Quantenpunkts hängen von seiner Größe, Form und Zusammensetzung ab, und sie können durch gezielte Veränderungen dieser Parameter gesteuert werden.
Im Jahr 2023 erhielten Moungi Bawendi, Louis Brus und Alexei Jekimow für ihre Forschungen auf diesem Gebiet den Nobelpreis für Chemie.
Methoden zur Herstellung
- Nasschemische Methoden: Die Nanopartikel, z. B. aus Cadmiumselenid oder Zinkoxid, liegen als kolloidale Teilchen in einem Lösungsmittel vor. Der eigentliche Quantenpunkt wird von weiteren Schichten zur Verbesserung der optischen Eigenschaften, Wasserlöslichkeit oder der Biokompatibilität umgeben.
- Epitaxie (Molekularstrahlepitaxie oder Metallorganische Gasphasenepitaxie): selbstorganisierte Quantenpunkte bilden sich spontan aus sehr dünnen Schichten (wenige Atomlagen dick) an Grenzflächen zwischen verschiedenen Halbleiterschichten, zum Beispiel durch die Stranski-Krastanov- oder die Volmer-Weber-Methode. Die Ursache für diese Selbstorganisation liegt in den durch die verschiedenen Gitterkonstanten von Substrat und Quantenpunktmaterial entstehenden Verspannungen der Quantenpunktschicht und den Unterschieden ihrer Oberflächenenergien. Nach der ECS-Theorie (equilibrium crystal shape – Gleichgewichtskristallform) der Thermodynamik nimmt ein makroskopischer Körper mit gegebenem Volumen im thermodynamischen Gleichgewicht diejenige Form an, die seine freie Oberflächenenergie minimiert (Ostwald-Reifung). Dies führt dazu, dass sich ab einer gewissen Schichtdicke aus der Quantenpunktschicht kleine Erhebungen, sogenannte Inseln, bilden. Dabei vergrößert sich zwar die Oberfläche (und damit die Oberflächenenergie), aber die Verspannung innerhalb der Inseln wird durch diesen Vorgang deutlich reduziert; dies stellt die Triebfeder der Inselbildung dar. Quantenpunkte werden dann durch Bedeckung der Inseln, meist mit dem gleichen Material wie unter den Inseln, erzeugt. Selbstorganisierte Quantenpunkte können frei von Defekten hergestellt werden.
- Lithographie: der Quantenpunkt wird mittels Elektronenstrahlen, Rasterkraftmikroskop oder ähnlichem auf ein Substrat 'geschrieben' und anschließend durch ein geeignetes Ätzverfahren (Nass-/Trockenätzen) 'freigelegt'. Die dadurch entstehenden Mesen können nun freistehend belassen oder, zur Verbesserung der elektronischen oder optischen Eigenschaften, wieder von einem geeigneten Halbleitermaterial, durch Aufwachsen einer weiteren Schicht, umschlossen werden. Während des Strukturierungsvorganges kann der Quantenpunkt auch mit elektrischen Zuleitungen versehen werden. Der Nachteil dieses Verfahrens besteht in der durch das Ätzen verursachten Anhäufung von Gitterdefekten, die zu verschlechterten elektronischen und damit auch optischen Eigenschaften des Quantenpunktes führt.
- In elektrostatisch definierten Quantenpunkten wird der dreidimensionale Einschluss der Ladungsträger durch eine Kombination von epitaktischen und lithografischen Methoden erreicht: an der Grenzfläche zwischen zwei Schichten von epitaktisch gewachsenem Halbleitermaterial (z. B. GaAs auf AlGaAs) bildet sich aufgrund der unterschiedlichen Bandstruktur ein Quantentopf, die Bewegung der Elektronen ist auf die Grenzfläche beschränkt. Um sie nun auch in den verbleibenden zwei Dimensionen einzuschränken, werden (z. B. lithographisch) mikroskopische Elektroden auf das System aufgebracht. Durch Anlegen geeigneter Spannung an den Elektroden wird im Quantentopf ein Potentialminimum erzeugt, in dem einzelne Elektronen bei niedrigen Temperaturen (25 mK) eingefangen werden können. Elektrostatisch definierte Quantenpunkte unterscheiden sich in mehrerer Hinsicht von kolloidalen oder epitaktisch gewachsenen Quantenpunkten: sie sind größer (ca. 105 bis 106 Atome; Durchmesser von 100 bis 1000 nm in der Quantentopf-Ebene), sie können nur entweder positiv oder negativ geladene Ladungsträger einfangen, und der Einschluss ist schwächer, weshalb sie sich nur bei sehr niedrigen Temperaturen untersuchen lassen. Einzelne oder mehrere gekoppelte Quantenpunkte können deterministisch hergestellt werden; das verwendete Material kann spannungsfrei und mit sehr geringer Defektdichte hergestellt werden und die Elektroden erlauben die direkte elektronische Manipulation der gefangenen Ladungsträger.
Größenordnung
Die Größe des Quantenpunkts liegt im Bereich der De-Broglie-Wellenlänge des Elektrons, weil hier die Quanteneigenschaften zu Tage treten. Die De-Broglie-Wellenlänge eines Elektrons beträgt:
mit der Energie bei Raumtemperatur:
- .
Damit ergibt sich:
- .
Dieser Wert ist eine Näherung, da es sich in der Formel um die stoffspezifische effektive Elektronenmasse handelt und somit auch die Wellenlänge materialabhängig ist.
Für Löcher ergibt sich durch die größere Masse bei diesen Quantenpunktgrößen ein schwächeres Confinement. Das heißt, die linienartige Energiestruktur (Zustandsdichte 0D, siehe Effekt der Dimensionsreduktion) ist nicht so stark ausgeprägt.
Der Quantenpunkt bildet einen Potentialtopf, der ein quantenmechanisches Confinement darstellt, d. h. eine stärkere Lokalisierung der Wellenfunktion bewirkt.
Spektrum
Aufgrund der zuvor bestimmten Größe des Quantenpunktes bilden sich atomähnliche Zustände. Der Übergang vom klassischen Bändermodell der Halbleiterphysik zu den quantisierten Energieniveaus niederdimensionaler Festkörper ist dabei kontinuierlich und von der Stärke des Einschlusses bzw. der Beschränkung (engl. confinement) der Wellenfunktion des im Quantenpunkt befindlichen Ladungsträgers abhängig.
Das Spektrum eines Quantenpunktes folgt aus der abgestrahlten Energie bei der Rekombination der Ladungsträger. Erwartungsgemäß sollte das bei atomähnlich quantisierten Zuständen ein Linienspektrum sein; dies wird bei sehr tiefen Temperaturen auch beobachtet.
Allerdings treten bei Quantenpunkten verschiedene Effekte auf, die zu einer Verbreiterung von Emissionslinien führen. Die Dipolschwingung des Emissionsvorgangs, der zu einer spektralen Linie führt, stellt grundsätzlich einen gedämpften harmonischen Oszillator mit endlicher Dämpfung dar. Bei der Fouriertransformation der Einhüllenden vom Ortsraum der abgestrahlten Welle in den Frequenzraum erhält man eine Lorentzkurve, deren Breite von der Dämpfungskonstante abhängt. Man sagt, die Spektrallinien sind 'lorentzverbreitert'; dies entspricht einer homogenen Linienverbreiterung.
Ein Ensemble vieler Quantenpunkte hat demgegenüber als gemeinsames Spektrum eine Gaußkurve mit deutlich größerer Breite. Ursache ist die gaußförmige Größenverteilung der Quantenpunkte um einen statistisch häufig auftretenden Wert durch lokale Schwankungen beim Wachstumsprozess. Das gaußförmige Emissionsspektrum ist das Kennzeichen einer inhomogenen Linienverbreiterung: Quantenpunkte mit identischer Größe aus einem Ensemble emittieren jeweils homogen verbreiterte Spektren gleicher Wellenlänge; Quantenpunkte unterschiedlicher Größen emittieren jedoch bei leicht verschiedenen Wellenlängen. Die Überlagerung von vielen dieser spektralen Lorentzkurven unterschiedlicher Wellenlänge führt zu der Gaußverteilung.
Linienverbreiterungsmechanismen
Man unterscheidet in homogene
- Lorentzverbreiterung
- Energie-Zeit-Unschärfe
- Ladungsträger-Exziton-Wechselwirkung (vor allem bei Typ-II-Quantenpunkten)
- Geladene Quantenpunkte
und inhomogene Verbreiterungsmechanismen, wobei letztere vor allem durch das Vorhandensein vieler Quantenpunkte in der Probe zustande kommt; hierdurch unterscheidet sich die lokale Umgebung der einzelnen Quantenpunkte und damit auch ihre Energiestruktur. Aber auch die Emissionslinie eines einzelnen Quantenpunkts ist meist inhomogen verbreitert. Die lokale Umgebung kann durch Umladung naher Defekte schnell veränderliche elektrische Felder aufweisen, die eine zeitlich meist nicht aufgelöste Änderung der Emissionswellenlänge bewirken. Diese sogenannte spektrale Diffusion tritt nur bei Proben mit sehr geringer Defektdichte nicht in Erscheinung. Als weiterer Effekt der Verbreiterung (insbesondere bei höheren Temperaturen) tritt die Wechselwirkung eines Quantenpunkts mit elastischen Schwingungen der Umgebung (Phononen) auf.
Verwendung
Quantenpunkte sind aufgrund ihrer beeinflussbaren optischen und elektronischen Eigenschaften für viele Anwendungen von Interesse
- Farbstoff für Marker in der Fluoreszenzmikroskopie und Durchflusszytometrie
- LEDs, Displays, insbesondere zur Optimierung der Hintergrundbeleuchtung von Flüssigkristallanzeigen
- Quantenpunktlaser
- Einzelphotonenquelle
- Quantencomputing
- Quantenpunkt-Spinventil
- Bildsensoren für digitale Kameras
- Ein-Elektron-Transistor
- Quantenpunkt-Solarzelle
Literatur
Fachartikel
- Gerhard Abstreiter: Die Dimension macht den Unterschied. In: Physik Journal. Band 13, Nr. 8/9, 2014 (pro-physik.de).
- Dieter Bimberg: Der Zoo der Quantenpunkte. In: Physik Journal. Band 5, Nr. 8/9, 2006 (pro-physik.de).
- Stephanie M. Reimann, Matti Manninen: Electronic structure of quantum dots. In: Reviews of Modern Physics. Band 74, Nr. 4, 26. November 2002, S. 1283–1342, doi:10.1103/RevModPhys.74.1283 (englisch).
Fachbücher
- Peter Michler (Hrsg.): Single Semiconductor Quantum Dots (= NanoScience and Technology). Springer Berlin Heidelberg, Berlin, Heidelberg 2009, ISBN 978-3-540-87445-4, doi:10.1007/978-3-540-87446-1 (englisch).
- Peter Michler (Hrsg.): Quantum Dots for Quantum Information Technologies (= Nano-Optics and Nanophotonics). Springer International Publishing, Cham 2017, ISBN 978-3-319-56377-0, doi:10.1007/978-3-319-56378-7 (englisch).
Weblinks
Einzelnachweise
- ↑ Dietrich Bertram, Horst Weller: Zwischen Molekül und Festkörper. In: Physik Journal. Band 1, Nr. 2, 2002, S. 47 (pro-physik.de).
- ↑ Günter Schmid: Nanoparticles: From Theory to Application. John Wiley & Sons, 2006, S. 28f (englisch, eingeschränkte Vorschau in der Google-Buchsuche).
- ↑ R. Hanson et al.: Spins in few-electron quantum dots. In: Reviews of Modern Physics. Band 79, 2007, S. 1217, doi:10.1103/RevModPhys.79.1217, arxiv:cond-mat/0610433.
- ↑ D. Loss und D. P. DiVincenzo: Quantum computation with quantum dots, Phys. Rev. A 57, p120 (1998) doi:10.1103/PhysRevA.57.120; arxiv:cond-mat/9701055.
- ↑ K. L. Janssens, B. Partoens, F. M. Peeters: Magnetoexcitons in planar type-II quantum dots in a perpendicular magnetic field. In: Physical Review B. Band 64, Nr. 15, 27. September 2001, S. 155324, doi:10.1103/PhysRevB.64.155324 (englisch, aps.org [abgerufen am 31. Januar 2023]).
- ↑ V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, R. Steingrüber, Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots, Physical Review B 61, 9944 (2000).
- ↑ Quantenpunkte: Technische Anwendungen der „künstlichen Atome“. In: Welt der Physik. Abgerufen am 13. Januar 2017.
- ↑ DaNa2.0 – Daten und Wissen zu Nanomaterialien: Quantenpunkte Materialinfo. Abgerufen am 13. Januar 2017.
- ↑ Quantenpunkt-Displays. In: Kompendium der Infotip Service GmbH. Abgerufen am 13. Januar 2017.
- ↑ Sascha Steinhoff: InVisage Quantum: Revolutionärer Bildsensor soll CMOS und CCD ablösen. In: c’t Digitale Fotografie. 23. November 2015 (heise.de [abgerufen am 13. Januar 2017]).