Der Satz von Halmos-Savage ist ein Lehrsatz der mathematischen Statistik, der bei Vorliegen einer dominierten Verteilungsklasse ein notwendiges und hinreichendes Kriterium für die Suffizienz von σ-Algebren (und damit auch von Statistiken) liefert. Damit ist der Satz von Halmos-Savage ein Hilfsmittel, um zu überprüfen, ob gewisse Funktionen eine Datenkompression ohne Informationsverlust ermöglichen. Aus dem Satz von Halmos-Savage lässt sich das leichter zu handhabende Neyman-Kriterium für Suffizienz ableiten. Ebenso lassen sich aus dem Satz Kriterien für die Existenz von minimalsuffizienten σ-Algebren ableiten.

Der Satz wurde 1949 von Paul Halmos und Leonard J. Savage bewiesen.

Rahmenbedingungen

Gegeben sei ein statistisches Modell mit einer dominierten Verteilungsklasse .

Für eine beliebige Verteilungsklasse sei die Menge aller -Nullmengen. Für eine dominierte Verteilungsklasse existiert nun immer ein dominierendes , so dass und eine abzählbare Konvexkombination mit echt positiven Koeffizienten von Elementen aus ist. Es gilt also

.

Aussage

Sei eine dominierte Verteilungsklasse und wie oben angegeben. Dann ist eine Unter-σ-Algebra von genau dann suffizient, wenn für alle eine Funktion existiert, so dass -fast sicher die Radon-Nikodým-Ableitung von bezüglich ist, also

.

Beispiel

Seien σ-Algebren und sei suffizient. Außerdem sei eine dominierte Verteilungsklasse. Dann existiert nach dem Satz von Halmos-Savage ein , so dass und

.

Da aber ist, gilt . Da immer noch die Dichten-Eigenschaft erfüllt, ist mit nochmaliger Anwendung des Satzes auch suffizient.

Man beachte, dass diese Aussage im Allgemeinen nicht gilt und dies eines der Defizite des Suffizienzbegriffs darstellt.

Literatur

  • Ludger Rüschendorf: Mathematische Statistik. Springer Verlag, Berlin Heidelberg 2014, ISBN 978-3-642-41996-6, doi:10.1007/978-3-642-41997-3.

Einzelnachweise

  1. Halmos, Savage: Application of the Radon-Nikodym Theorem to the Theory of Sufficient Statistics, Annals of Mathematical Statistics, Band 20, 1949, S. 225–241, Project Euclid
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.