Eine Wieferich-Primzahl ist eine Primzahl mit der Eigenschaft, dass durch teilbar ist.

Alternativ kann man dies auch als Kongruenz schreiben:

Solche Primzahlen wurden 1909 von dem deutschen Mathematiker Arthur Wieferich erstmals beschrieben.

Bekannte Wieferich-Primzahlen

Man kennt bisher nur zwei Wieferich-Primzahlen, nämlich 1093 (Waldemar Meißner 1913) und 3511 (Beeger 1922). Mit Computerhilfe wurden bis November 2008 alle Zahlen bis 6,7 × 1015 untersucht, weitere Wieferich-Primzahlen fand man dabei nicht. Es ist nicht bekannt, ob es unendlich viele Wieferich-Primzahlen gibt. Es besteht sowohl die Vermutung, dass dies nicht der Fall ist, als auch die gegenteilige, genauer: dass zwischen und etwa Wieferich-Primzahlen liegen. Es ist sogar noch offen, ob es unendlich viele Primzahlen gibt, die keine Wieferich-Primzahlen sind. Joseph Silverman zeigte dies 1988 unter Annahme der abc-Vermutung.

Verwandtschaft mit dem großen Fermatschen Satz

Wieferich beschäftigte sich mit dem großen Fermatschen Satz. 1909 veröffentlichte er als Ergebnis den Satz:

Wenn , wobei und ganze Zahlen sind, eine Primzahl ist und das Produkt nicht teilbar durch , dann ist eine Wieferich-Primzahl, also durch teilbar.

1910 zeigte Dmitry Mirimanoff, dass dann auch durch teilbar ist. Die einzigen bekannten Primzahlen, die diese Bedingung erfüllen, sind und (Kloss 1965).

Aus dem 1995 bewiesenen großen Fermatschen Satz folgt, dass die Voraussetzungen des Satzes von Wieferich nicht erfüllt werden können.

Eigenschaften von Wieferich-Primzahlen

  • Aus der Wieferich-Primzahl kann die Mersenne-Zahl als Produkt konstruiert werden.
ist somit (trivialerweise, da geradzahlig) nicht prim, und keine Mersenne-Primzahl.
  • Offen ist die Frage, ob es Mersenne-Zahlen (mit primen Exponenten ) gibt, die durch teilbar sind. Dabei muss ein Teiler von sein, wenn durch teilbar sein soll.
Dieser Sachverhalt kann mit gruppentheoretischen Begriffen ausgedrückt werden:
Da nicht prim ist, handelt es sich bei nicht um eine mersennesche Zahl. Es müsste also eine mersennesche Zahl mit geben, die durch teilbar ist; d. h., dass die Länge der multiplikativen zyklischen Subgruppe von zur Basis 2 prim sein müsste.
Es sind aber empirisch die Gruppenordnungen der einzigen bekannten Wieferichprimzahlen und nicht prim.
Dass Mersenne-Zahlen quadratfrei sind, scheint bisher nur ein empirisches Resultat zu sein. Mathworld formuliert bspw. "Alle bekannten Mersenne Zahlen sind quadratfrei. Allerdings vermutet GUY (1994), dass es Mersenne-Zahlen gibt, die nicht quadratfrei sind".
  • Unterschied zu anderen Basen als 2: für andere Basen als 2 und die entsprechenden Äquivalente zu Mersenne- und Wieferichzahlen trifft dies nicht zu.
Bspw. ist zur Basis 3 mit die Bedingung teilt (mit prim) erfüllt.
Zur Basis 2819 tritt bei das Wieferich-analog sogar zur Potenz 4 auf. Die Quadratfreiheit von Mersenne-Zahlen (zur Basis 2) muss demnach eine besondere Eigenschaft der Basis 2 (und möglicherweise weiterer Basen) sein, falls sie generell zutreffen sollte.
  • Für eine Wieferich-Primzahl gilt:
  • Mit tritt stets gleichzeitig auf.

Literatur

  • Paulo Ribenboim: Die Welt der Primzahlen. Geheimnisse und Rekorde. Springer, Berlin u. a. 2006, ISBN 3-540-34283-4 (Springer-Lehrbuch; aktualisierte Übersetzung von The little book of bigger primes. Springer, New York 2004)

Einzelnachweise

  1. 1 2 Arthur Wieferich: Zum letzten Fermatschen Theorem. In: Journal für die reine und angewandte Mathematik, 136, 1909, S. 293–302
  2. Waldemar Meißner: Über die Teilbarkeit von 2p−2 durch das Quadrat der Primzahl p=1093. In: Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 10. Juli 1913, S. 663–667
  3. N. G. W. H. Beeger: On a new case of the congruence 2p−1 ≡ 1 (mod p2). In: Messenger of Mathematics, 51, 1922, S. 149–150 (englisch) Textarchiv – Internet Archive
  4. François G. Dorais, Dominic W. Klyve: A Wieferich prime search up to 6.7 × 1015. In: Journal of Integer Sequences, 14, 16. Oktober 2011, Artikel 11.9.2 (englisch)
  5. Wieferich prime. bei den Prime Pages von Chris K. Caldwell (englisch)
  6. Richard Crandall, Karl Dilcher, Carl Pomerance: A search for Wieferich and Wilson primes. In: Mathematics of Computation, 66, Januar 1997, S. 433–449 (englisch)
  7. Joseph H. Silverman: Wieferich’s criterion and the abc-conjecture. In: Journal of Number Theory, 30, Oktober 1988, S. 226–237 (englisch)
  8. D. Mirimanoff: Sur le dernier théorème de Fermat. In: Comptes rendus hebdomadaires des séances de l’académie des sciences, 150, 1910, S. 204–206, Textarchiv – Internet Archive; erweiterte Version: Sur le dernier théorème de Fermat. In: Journal für die reine und angewandte Mathematik, 139, 1911, S. 309–324 (französisch)
  9. K. E. Kloss: Some number-theoretic calculations. In: Journal of Research of the National Bureau of Standards, 69B, Oktober–Dezember 1965, S. 335–336 (englisch; Zentralblatt-Rezension)
  10. Eric W. Weisstein: Mersenne Number. In: MathWorld (englisch).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.