Verallgemeinerte lineare Modelle
Verallgemeinerte lineare Modelle (VLM), auch generalisierte lineare Modelle (GLM oder GLiM) sind in der Statistik eine von John Nelder und Robert Wedderburn (1972) eingeführte wichtige Klasse von nichtlinearen Modellen, die eine Verallgemeinerung des klassischen linearen Regressionsmodells in der Regressionsanalyse darstellt. Von spezieller Bedeutung ist die Verwendung einer nichtlinearen Kopplungsfunktion. Während man in klassischen linearen Modellen annimmt, dass die Störgröße (die unbeobachtbare Zufallskomponente) normalverteilt ist, kann sie in GLMs eine Verteilung aus der Klasse der Exponentialfamilie besitzen. Diese Verteilungsklasse beinhaltet neben der Normalverteilung auch die Binomial-, Poisson-, Gamma- und inverse Gaußverteilung. Damit bietet die Verwendung der Exponentialfamilie in verallgemeinerten linearen Modellen ein einheitliches Rahmenwerk für diese Verteilungen. Die große Klasse von vektorverallgemeinerten linearen Modellen (englisch vector generalized linear models, kurz VGLMs) beinhaltet die Klasse der verallgemeinerten linearen Modelle als Spezialfall. Ebenso in dieser großen Modellklasse enthalten sind loglineare Modelle für kategoriale Daten und das Modell der Poisson-Regression für Zähldaten. Um die Einschränkungen der verallgemeinerten linearen Modelle und verallgemeinerten additiven Modelle zu überwinden, wurden sogenannte Verallgemeinerte additive Modelle für Lage-, Skalen- und Formparameter entwickelt.