Der Begriff der stochastischen Differentialgleichung (Abkürzung SDGL oder englisch SDE für stochastic differential equation) ist in der Mathematik eine Verallgemeinerung des Begriffs der gewöhnlichen Differentialgleichung auf stochastische Prozesse. Stochastische Differentialgleichungen werden in zahlreichen Anwendungen eingesetzt, um zeitabhängige Vorgänge zu modellieren, die neben deterministischen Einflüssen zusätzlich stochastischen Störfaktoren (Rauschen) ausgesetzt sind.

Die mathematische Formulierung des Problems stellte die Mathematiker vor große Probleme, und so wurde die formale Theorie der stochastischen Differentialgleichungen erst in den 1940er Jahren durch den japanischen Mathematiker Itō Kiyoshi formuliert. Gemeinsam mit der stochastischen Integration begründet die Theorie der stochastischen Differentialgleichungen die stochastische Analysis.

Stochastische Differentialgleichungen sind im Allgemeinen keine Differentialgleichungen und zu unterscheiden von den zufälligen Differentialgleichungen (RDE für englisch random differential equations). Letztere besitzen differenzierbare Pfade.

Von der Differential- zur Integralgleichung

Genau wie bei deterministischen Funktionen möchte man auch bei stochastischen Prozessen den Zusammenhang zwischen dem Wert der Funktion und ihrer momentanen Änderung (ihrer Ableitung) in einer Gleichung formulieren. Was im einen Fall zu einer gewöhnlichen Differentialgleichung führt, ist im anderen Fall problematisch, da viele stochastische Prozesse, wie beispielsweise der Wiener-Prozess, nirgends differenzierbar sind.

Jedoch lässt sich eine gewöhnliche Differentialgleichung

immer auch äquivalent als Integralgleichung

schreiben, die ohne explizite Erwähnung der Ableitung auskommt. Bei stochastischen Differentialgleichungen geht man nun den umgekehrten Weg, d. h., man definiert den Begriff mit Hilfe der zugehörigen Integralgleichung.

Die Formulierung

Gegeben sei ein filtrierter Wahrscheinlichkeitsraum , der die üblichen Bedingungen erfüllt, und die mit bezeichnete Gesamtheit aller linearen Abbildungen von nach .

Itōsche Differentialgleichung

Seien zwei stetige Funktionen

sowie eine -adaptierte -dimensionale brownsche Bewegung gegeben. Die dazugehörige stochastische Integralgleichung

wird durch Einführung der Differentialschreibweise

zur stochastischen Differentialgleichung. Durch die Substitution lässt sich die Gleichung auch verkürzt aufschreiben. Das erste Integral ist als Lebesgue-Integral und das zweite als Itō-Integral zu lesen. Zu gegebenen Funktionen und (auch als Drift und Diffusionskoeffizient bezeichnet) und einer brownschen Bewegung wird hier also ein -dimensionaler Prozess gesucht, der die obige Integralgleichung erfüllt. Dieser Prozess ist dann eine Lösung der obigen SDGL. Um den infinitesimalen Generator zu berechnen, wendet man die Itō-Formel an und integriert dann.

Auf Mannigfaltigkeiten

Stochastische Differentialgleichungen können auch allgemeiner auf Mannigfaltigkeiten betrachtet werden, diese sind Untersuchungsgegenstand der stochastischen Differentialgeometrie.

Eine SDGL auf einer Mannigfaltigkeit ist ein Paar , wobei

  • ein stetiges Semimartingal auf einem endlichdimensionalen -Vektorraum ist.
  • ein Homomorphismus von Vektorbündeln über
ist, wobei eine lineare Abbildung bezeichnet.

Die stochastische Differentialgleichung notieren wir als Fisk-Stratonowitsch-Integral

Existenz und Eindeutigkeit

Ist eine beliebige, auf demselben Wahrscheinlichkeitsraum wie definierte Zufallsvariable, so wird aus der obigen SDGL durch Hinzufügen der Bedingung fast sicher ein stochastisches Anfangswertproblem als Pendant zum Anfangswertproblem für gewöhnliche Differentialgleichungen.

Auch zum Existenz- und Eindeutigkeitssatz von Picard und Lindelöf findet sich hier eine Entsprechung: wenn die folgenden drei Eigenschaften erfüllt sind:

  • , d. h., hat endliche Varianz.
  • Lipschitz-Bedingung: Es gibt eine Konstante , sodass für alle und alle gilt
.
  • Lineare Beschränktheit: Es gibt eine Konstante , sodass für alle und alle gilt
.

Dann besitzt das Anfangswertproblem eine (bis auf fast sichere Gleichheit) eindeutige Lösung , die zudem zu jedem Zeitpunkt endliche Varianz besitzt.

Ist eine beliebige, auf demselben Wahrscheinlichkeitsraum wie definierte Zufallsvariable, so wird aus der obigen SDGL durch Hinzufügen der Bedingung fast sicher ein stochastisches Anfangswertproblem als Pendant zum Anfangswertproblem für gewöhnliche Differentialgleichungen.

Auch zum Existenz- und Eindeutigkeitssatz von Picard und Lindelöf findet sich hier eine Entsprechung: wenn die folgenden drei Eigenschaften erfüllt sind:

  • , d. h., hat endliche Varianz.
  • Lipschitz-Bedingung: Es gibt eine Konstante , sodass für alle und alle gilt
.
  • Lineare Beschränktheit: Es gibt eine Konstante , sodass für alle und alle gilt
.

Dann besitzt das Anfangswertproblem eine (bis auf fast sichere Gleichheit) eindeutige Lösung , die zudem zu jedem Zeitpunkt endliche Varianz besitzt.

Allgemeine Situation: lokale Lipschitz-Bedingung und Maximallösungen

Wir betrachten die allgemeine Form einer stochastischen Differentialgleichung

wobei

  • ein stetiges Semimartingal in und ein stetiges Semimartingal in ist,
  • ist eine Abbildung von einer nichtleeren offenen Menge , wobei der Raum aller linearen Abbildungen von nach ist.

Ob die Lösung der Gleichung explodiert oder nicht, hängt von der Wahl der Funktion ab. Deshalb führen wir nun eine lokale Lipschitz-Bedingung für ein. Für , eine kompakte Menge und eine Konstante sei

wobei die euklidische Norm bezeichnet. Diese Bedingung garantiert die Existenz und Eindeutigkeit einer Maximallösung.

Sei nun stetig und erfülle die oben genannte lokale Lischpitz-Bedingung, weiter sei eine Initialbedingung, das heißt eine messbare Funktion bezüglich der Initial-σ-Algebra . Sei ein vorhersehbare Stoppzeit mit fast sicher. Ein -wertiges Semimartingal heißt Maximallösung von

mit Lebenszeit , falls

  • für eine (und somit für alle) ankündigende Stoppzeiten der gestoppte Prozess eine Lösung der gestoppten stochastischen Differentialgleichung
ist,
  • auf fast sicher mit gilt.

nennt man auch Explosionszeit.

Beispiele

Lösen von stochastischen Differentialgleichungen und Simulation der Lösungen

Genau wie bei deterministischen gibt es auch bei stochastischen Differentialgleichungen keinen allgemeinen Ansatz zur Ermittlung der Lösung. In manchen Fällen (wie bei der oben erwähnten Black-Scholes-SDGL, deren Lösung eine geometrische brownsche Bewegung ist) ist es auch hier möglich, die Lösung zu „erraten“ und durch Ableiten zu verifizieren (wobei das Differenzieren hier mit Hilfe der Itō-Formel erfolgt).

Die Lösungen einer stochastischen Differentialgleichung sind wiederum in starke und schwache Lösungen unterteilt. Der Unterschied liegt darin, dass bei einer starken Lösung mit Initialwert der Wahrscheinlichkeitsraum und die brownsche Bewegung schon a priori gegeben sind, bei der schwachen Lösung können diese selber gewählt werden und es muss nur für ein gegebenes gelten.

In den meisten Fällen, die in der Praxis auftauchen, wie zum Beispiel auch im Fall des Wurzel-Diffusionsprozesses, ist jedoch keine geschlossene Form der Lösung zu erreichen. Doch ist man zumeist auch nur daran interessiert, Zufallspfade der entsprechenden Lösung zu simulieren. Dies kann approximativ durch numerische Diskretisierungsverfahren erreicht werden, etwa durch das Euler-Maruyama-Schema (das dem expliziten Euler-Verfahren für gewöhnliche Differentialgleichungen nachempfunden ist) oder das Milstein-Verfahren.

Stochastische Delay-Differentialgleichungen

Bei einer stochastischen Delay-Differentialgleichung (SDDE, stochastic delay differential equation) hängt der zukünftige Zuwachs nicht nur von dem derzeitigen Zustand, sondern auch von den Zuständen in einem davorliegenden beschränkten Zeitintervall ab. Existenz und Eindeutigkeit sind unter ähnlichen Bedingungen wie in „normalen“ SDGLs gegeben. Seien

,

stetig, und sei eine m-dimensionale Brownsche Bewegung. Dann ist eine stochastische Delay-Differentialgleichung eine Gleichung der Form

wobei

Die dazugehörige Differentialschreibweise lautet dann

.

Siehe auch

Literatur

  • Bernt Øksendal: Stochastic Differential Equations. An Introduction with Applications. 6. Auflage. Springer, Berlin 2003, ISBN 3-540-04758-1.
  • Philip E. Protter: Stochastic Integration and Differential Equations. Springer, Berlin 2003, ISBN 3-540-00313-4.

Einzelnachweise

  1. Wolfgang Hackenbroch und Anton Thalmaier: Stochastische Analysis: Eine Einführung in die Theorie der stetigen Semimartingale. Hrsg.: Vieweg+Teubner Verlag Wiesbaden. ISBN 978-3-519-02229-9, S. 297299.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.