Atomic radii of the elements (data page)

The atomic radius of a chemical element is the distance from the center of the nucleus to the outermost shell of an electron. Since the boundary is not a well-defined physical entity, there are various non-equivalent definitions of atomic radius. Depending on the definition, the term may apply only to isolated atoms, or also to atoms in condensed matter, covalently bound in molecules, or in ionized and excited states; and its value may be obtained through experimental measurements, or computed from theoretical models. Under some definitions, the value of the radius may depend on the atom's state and context.[1]

Atomic radii vary in a predictable and explicable manner across the periodic table. For instance, the radii generally decrease rightward along each period (row) of the table, from the alkali metals to the noble gases; and increase down each group (column). The radius increases sharply between the noble gas at the end of each period and the alkali metal at the beginning of the next period. These trends of the atomic radii (and of various other chemical and physical properties of the elements) can be explained by the electron shell theory of the atom; they provided important evidence for the development and confirmation of quantum theory.

Atomic radius

Note: All measurements given are in picometers (pm). For more recent data on covalent radii see Covalent radius. Just as atomic units are given in terms of the atomic mass unit (approximately the proton mass), the physically appropriate unit of length here is the Bohr radius, which is the radius of a hydrogen atom. The Bohr radius is consequently known as the "atomic unit of length". It is often denoted by a0 and is approximately 53 pm. Hence, the values of atomic radii given here in picometers can be converted to atomic units by dividing by 53, to the level of accuracy of the data given in this table.

atomic numbersymbolname empirical Calculated van der Waals Covalent (single bond) Covalent (triple bond) Metallic
1Hhydrogen 25[2] 53 120[3] or 110[4] 32
2Hehelium 120 31[5] 140[3][4] 46
3Lilithium 145[2] 167[5] 182[3] or 181[4] 133 152
4Beberyllium 105[2] 112[5] 153[4] 102 85[6] 112
5Bboron 85[2] 87[5] 192[4] 85 73[6]
6Ccarbon 70[2] 67[5] 170[3][4] 75 60[6]
7Nnitrogen 65[2] 56[5] 155[3][4] 71 54[6]
8Ooxygen 60[2] 48[5] 152[3][4] 63 53[6]
9Ffluorine 50[2] 42[5] 147[3][4] 64 53[6]
10Neneon 160[7] 38[5] 154[3][4] 67
11Nasodium 180[2] 190[5] 227[3][4] 155 186
12Mgmagnesium 150[2] 145[5] 173[3][4] 139 127[6] 160
13Alaluminium 125[2] 118[5] 184[4] 126 111[6] 143
14Sisilicon 110[2] 111[5] 210[3][4] 116 102[6]
15Pphosphorus 100[2] 98[5] 180[3][4] 111 94[6]
16Ssulfur 100[2] 88[5] 180[3][4] 103 95[6]
17Clchlorine 100[2] 79[5] 175[3][4] 99 93[6]
18Arargon 71 71[5] 188[3][4] 96 96[6]
19Kpotassium 220[2] 243[5] 275[3][4] 196 227
20Cacalcium 180[2] 194[5] 231[4] 171 133[6] 197
21Scscandium 160[2] 184[5] 211 148 114[6] 162 b
22Tititanium 140[2] 176[5] 136 108[6] 147
23Vvanadium 135[2] 171[5] 134 106[6] 134 b
24Crchromium 140[2] 166[5] 122 103[6] 128 b
25Mnmanganese 140[2] 161[5] 119 103[6] 127 b
26Feiron 140[2] 156[5] 116 102[6] 126 b
27Cocobalt 135[2] 152[5] 111 96[6] 125 b
28Ninickel 135[2] 149[5] 163[3] 110 101[6] 124 b
29Cucopper 135[2] 145[5] 140[3] 112 120[6] 128 b
30Znzinc 135[2] 142[5] 139[3] 118 134 b
31Gagallium 130[2] 136[5] 187[3][4] 124 121[6] 135 c
32Gegermanium 125[2] 125[5] 211[4] 121 114[6]
33Asarsenic 115[2] 114[5] 185[3][4] 121 106[6]
34Seselenium 115[2] 103[5] 190[3][4] 116 107[6]
35Brbromine 115[2] 94[5] 185[3] or 183[4] 114 110[6]
36Krkrypton 88[5] 202[3][4] 117 108[6]
37Rbrubidium 235[2] 265[5] 303[4] 210 248
38Srstrontium 200[2] 219[5] 249[4] 185 139[6] 215
39Yyttrium 180[2] 212[5] 163 124[6] 180 b
40Zrzirconium 155[2] 206[5] 154 121[6] 160
41Nbniobium 145[2] 198[5] 147 116[6] 146 b
42Momolybdenum 145[2] 190[5] 138 113[6] 139 b
43Tctechnetium 135[2] 183[5] 128 110[6] 136 b
44Ruruthenium 130[2] 178[5] 125 103[6] 134 b
45Rhrhodium 135[2] 173[5] 125 106[6] 134 b
46Pdpalladium 140[2] 169[5] 163[3] 120 112[6] 137 b
47Agsilver 160[2] 165[5] 172[3] 128 137[6] 144 b
48Cdcadmium 155[2] 161[5] 158[3] 136 151 b
49Inindium 155[2] 156[5] 193[3][4] 142 146[6] 167
50Sntin 145[2] 145[5] 217[3][4] 140 132[6]
51Sbantimony 145[2] 133[5] 206[4] 140 127[6]
52Tetellurium 140[2] 123[5] 206[3][4] 136 121[6]
53Iiodine 140[2] 115[5] 198[3][4] 133 125[6]
54Xexenon 108[5] 216[3][4] 131 122[6]
55Cscaesium 260[2] 298[5] 343[4] 232 265
56Babarium 215[2] 253[5] 268[4] 196 149[6] 222
57Lalanthanum 195[2] 226 180 139[6] 187 b
58Cecerium 185[2] 210 163 131[6] 181.8 c
59Prpraseodymium 185[2] 247[5] 176 128[6] 182.4 c
60Ndneodymium 185[2] 206[5] 174 181.4 c
61Pmpromethium 185[2] 205[5] 173 183.4 c
62Smsamarium 185[2] 238[5] 172 180.4 c
63Eueuropium 185[2] 231[5] 168 180.4 c
64Gdgadolinium 180[2] 233[5] 169 132[6] 180.4 c
65Tbterbium 175[2] 225[5] 168 177.3 c
66Dydysprosium 175[2] 228[5] 167 178.1 c
67Hoholmium 175[2] 226[5] 166 176.2 c
68Ererbium 175[2] 226[5] 165 176.1 c
69Tmthulium 175[2] 222[5] 164 175.9 c
70Ybytterbium 175[2] 222[5] 170 176 c
71Lulutetium 175[2] 217[5] 162 131[6] 173.8 c
72Hfhafnium 155[2] 208[5] 152 122[6] 159
73Tatantalum 145[2] 200[5] 146 119[6] 146 b
74Wtungsten 135[2] 193[5] 137 115[6] 139 b
75Rerhenium 135[2] 188[5] 131 110[6] 137 b
76Ososmium 130[2] 185[5] 129 109[6] 135 b
77Iriridium 135[2] 180[5] 122 107[6] 135.5 b
78Ptplatinum 135[2] 177[5] 175[3] 123 110[6] 138.5 b
79Augold 135[2] 174[5] 166[3] 124 123[6] 144 b
80Hgmercury 150[2] 171[5] 155[3] 133 151 b
81Tlthallium 190[2] 156[5] 196[3][4] 144 150[6] 170
82Pblead 180 154[5] 202[3][4] 144 137[6]
83Bibismuth 160[2] 143[5] 207[4] 151 135[6]
84Popolonium 190[2] 135[5] 197[4] 145 129[6]
85Atastatine 127[5] 202[4] 147 138[6]
86Rnradon 120[5] 220[4] 142 133[6]
87Frfrancium 348[4]
88Raradium 215[2] 283[4] 201 159[6]
89Acactinium 195[2] 186 140[6]
90Ththorium 180[2] 175 136[6] 179 b
91Paprotactinium 180[2] 169 129[6] 163 d
92Uuranium 175[2] 186[3] 170 118[6] 156 e
93Npneptunium 175[2] 171 116[6] 155 e
94Puplutonium 175[2] 172 159 e
95Amamericium 175[2] 166 173 b
96Cmcurium 176 166 174 b
97Bkberkelium 170 b
98Cfcalifornium 186±2 b
99Eseinsteinium 186±2 b
100Fmfermium
101Mdmendelevium
102Nonobelium
103Lrlawrencium
104Rfrutherfordium 131[6]
105Dbdubnium 126[6]
106Sgseaborgium 121[6]
107Bhbohrium 119[6]
108Hshassium 118[6]
109Mtmeitnerium 113[6]
110Dsdarmstadtium 112[6]
111Rgroentgenium 118[6]
112Cncopernicium 130[6]
113Nhnihonium
114Flflerovium
115Mcmoscovium
116Lvlivermorium
117Tstennessine
118Ogoganesson

See also

Notes

  • Difference between empirical and experimental data: Empirical data basically means, "originating in or based on observation or experience" or "relying on experience or observation alone often without due regard for system and theory data".[8] It basically means that you measured it through physical observation, and a lot of experiments generating the same results. Although, note that the values are not calculated by a formula. However, often the empirical results then become an equation of estimation. Experimental data on the other hand are only based on theories. Such theoretical predictions are useful when there are no ways of measuring radii experimentally, if you want to predict the radius of an element that hasn't been discovered yet, or it has too short of a half-life.
  • The radius of an atom is not a uniquely defined property and depends on the definition. Data derived from other sources with different assumptions cannot be compared.
  • † to an accuracy of about 5 pm
  • (b) 12 coordinate
  • (c) gallium has an anomalous crystal structure
  • (d) 10 coordinate
  • (e) uranium, neptunium and plutonium have irregular structures
  • Triple bond mean-square deviation 3pm.

References

  1. Cotton, F. A.; Wilkinson, G. (1988). Advanced Inorganic Chemistry (5th ed.). Wiley. p. 1385. ISBN 978-0-471-84997-1.
  2. J.C. Slater (1964). "Atomic Radii in Crystals". The Journal of Chemical Physics. 41 (10): 3199–3204. Bibcode:1964JChPh..41.3199S. doi:10.1063/1.1725697.
  3. A. Bondi (1964). "van der Waals Volumes and Radii". The Journal of Physical Chemistry. 68 (3): 441–451. doi:10.1021/j100785a001.
  4. Mantina, Manjeera; Chamberlin, Adam C.; Valero, Rosendo; Cramer, Christopher J.; Truhlar, Donald G. (2009-04-21). "Consistent van der Waals Radii for the Whole Main Group". The Journal of Physical Chemistry A. 113 (19). American Chemical Society (ACS): 5806–5812. Bibcode:2009JPCA..113.5806M. doi:10.1021/jp8111556. ISSN 1089-5639. PMC 3658832. PMID 19382751.
  5. E. Clementi; D.L.Raimondi; W.P. Reinhardt (1967). "Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons". The Journal of Chemical Physics. 47 (4): 1300–1307. Bibcode:1967JChPh..47.1300C. doi:10.1063/1.1712084.
  6. S. Riedel; P.Pyykkö, M. Patzschke; Patzschke, M (2005). "Triple-Bond Covalent Radii". Chem. Eur. J. 11 (12): 3511–3520. doi:10.1002/chem.200401299. PMID 15832398.
  7. Neon has van der Waal's radii thus its radii is the highest in its period
  8. "Empirical Definition & Meaning - Merriam-Webster".

Data is as quoted at http://www.webelements.com/ from these sources:

Covalent radii (single bond)

  • R.T. Sanderson (1962). Chemical Periodicity. New York, USA: Reinhold.
  • L.E. Sutton, ed. (1965). "Supplement 1956–1959, Special publication No. 18". Table of interatomic distances and configuration in molecules and ions. London, UK: Chemical Society.
  • J.E. Huheey; E.A. Keiter & R.L. Keiter (1993). Inorganic Chemistry : Principles of Structure and Reactivity (4th ed.). New York, USA: HarperCollins. ISBN 0-06-042995-X.
  • W.W. Porterfield (1984). Inorganic chemistry, a unified approach. Reading Massachusetts, USA: Addison Wesley Publishing Co. ISBN 0-201-05660-7.
  • A.M. James & M.P. Lord (1992). Macmillan's Chemical and Physical Data. MacMillan. ISBN 0-333-51167-0.

Metallic radius

Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.